3、WordCount源码分析 3.1 特别数据类型介绍 Hadoop提供了如下内容的数据类型,这些数据类型都实现了WritableComparable接口,以便用这些类型定义的数据可以被序列化进行网络传输和文件存储,以及进行大小比较。 BooleanWritable:标准布尔型数值 ByteWritable:单字节数值 DoubleWritable:双字节数 FloatWritable:浮点数 IntWritable:整型数 LongWritable:长整型数 Text:使用UTF8格式存储的文本 NullWritable:当<key,value>中的key或value为空时使用 3.2 旧的WordCount分析 1)源代码程序 - package org.apache.hadoop.examples;
-
- import java.io.IOException;
- import java.util.Iterator;
- import java.util.StringTokenizer;
-
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.FileInputFormat;
- import org.apache.hadoop.mapred.FileOutputFormat;
- import org.apache.hadoop.mapred.JobClient;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapred.MapReduceBase;
- import org.apache.hadoop.mapred.Mapper;
- import org.apache.hadoop.mapred.OutputCollector;
- import org.apache.hadoop.mapred.Reducer;
- import org.apache.hadoop.mapred.Reporter;
- import org.apache.hadoop.mapred.TextInputFormat;
- import org.apache.hadoop.mapred.TextOutputFormat;
-
- public class WordCount {
-
- public static class Map extends MapReduceBase implements
- Mapper<LongWritable, Text, Text, IntWritable> {
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
-
- public void map(LongWritable key, Text value,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException {
- String line = value.toString();
- StringTokenizer tokenizer = new StringTokenizer(line);
- while (tokenizer.hasMoreTokens()) {
- word.set(tokenizer.nextToken());
- output.collect(word, one);
- }
- }
- }
-
- public static class Reduce extends MapReduceBase implements
- Reducer<Text, IntWritable, Text, IntWritable> {
- public void reduce(Text key, Iterator<IntWritable> values,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException {
- int sum = 0;
- while (values.hasNext()) {
- sum += values.next().get();
- }
- output.collect(key, new IntWritable(sum));
- }
- }
-
- public static void main(String[] args) throws Exception {
- JobConf conf = new JobConf(WordCount.class);
- conf.setJobName("wordcount");
-
- conf.setOutputKeyClass(Text.class);
- conf.setOutputValueClass(IntWritable.class);
-
- conf.setMapperClass(Map.class);
- conf.setCombinerClass(Reduce.class);
- conf.setReducerClass(Reduce.class);
-
- conf.setInputFormat(TextInputFormat.class);
- conf.setOutputFormat(TextOutputFormat.class);
-
- FileInputFormat.setInputPaths(conf, new Path(args[0]));
- FileOutputFormat.setOutputPath(conf, new Path(args[1]));
-
- JobClient.runJob(conf);
- }
- }
3)主方法Main分析 - public static void main(String[] args) throws Exception {
- JobConf conf = new JobConf(WordCount.class);
- conf.setJobName("wordcount");
-
- conf.setOutputKeyClass(Text.class);
- conf.setOutputValueClass(IntWritable.class);
-
- conf.setMapperClass(Map.class);
- conf.setCombinerClass(Reduce.class);
- conf.setReducerClass(Reduce.class);
-
- conf.setInputFormat(TextInputFormat.class);
- conf.setOutputFormat(TextOutputFormat.class);
-
- FileInputFormat.setInputPaths(conf, new Path(args[0]));
- FileOutputFormat.setOutputPath(conf, new Path(args[1]));
-
- JobClient.runJob(conf);
- }
首先讲解一下Job的初始化过程。main函数调用Jobconf类来对MapReduce Job进行初始化,然后调用setJobName()方法命名这个Job。对Job进行合理的命名有助于更快地找到Job,以便在JobTracker和Tasktracker的页面中对其进行监视。 JobConf conf = new JobConf(WordCount. class ); conf.setJobName("wordcount" ); 接着设置Job输出结果<key,value>的中key和value数据类型,因为结果是<单词,个数>,所以key设置为"Text"类型,相当于Java中String类型。Value设置为"IntWritable",相当于Java中的int类型。 conf.setOutputKeyClass(Text.class ); conf.setOutputValueClass(IntWritable.class );
然后设置Job处理的Map(拆分)、Combiner(中间结果合并)以及Reduce(合并)的相关处理类。这里用Reduce类来进行Map产生的中间结果合并,避免给网络数据传输产生压力。 conf.setMapperClass(Map.class ); conf.setCombinerClass(Reduce.class ); conf.setReducerClass(Reduce.class );
接着就是调用setInputPath()和setOutputPath()设置输入输出路径。 conf.setInputFormat(TextInputFormat.class ); conf.setOutputFormat(TextOutputFormat.class );
(1)InputFormat和InputSplit InputSplit是Hadoop定义的用来传送给每个单独的map的数据,InputSplit存储的并非数据本身,而是一个分片长度和一个记录数据位置的数组。生成InputSplit的方法可以通过InputFormat()来设置。 当数据传送给map时,map会将输入分片传送到InputFormat,InputFormat则调用方法getRecordReader()生成RecordReader,RecordReader再通过creatKey()、creatValue()方法创建可供map处理的<key,value>对。简而言之,InputFormat()方法是用来生成可供map处理的<key,value>对的。 Hadoop预定义了多种方法将不同类型的输入数据转化为map能够处理的<key,value>对,它们都继承自InputFormat,分别是: - InputFormat
-
- |
-
- |---BaileyBorweinPlouffe.BbpInputFormat
-
- |---ComposableInputFormat
-
- |---CompositeInputFormat
-
- |---DBInputFormat
-
- |---DistSum.Machine.AbstractInputFormat
-
- |---FileInputFormat
-
- |---CombineFileInputFormat
-
- |---KeyValueTextInputFormat
-
- |---NLineInputFormat
-
- |---SequenceFileInputFormat
-
- |---TeraInputFormat
-
- |---TextInputFormat
其中TextInputFormat是Hadoop默认的输入方法,在TextInputFormat中,每个文件(或其一部分)都会单独地作为map的输入,而这个是继承自FileInputFormat的。之后,每行数据都会生成一条记录,每条记录则表示成<key,value>形式: value值是每行的内容,数据类型是Text。 (2)OutputFormat 每一种输入格式都有一种输出格式与其对应。默认的输出格式是TextOutputFormat,这种输出方式与输入类似,会将每条记录以一行的形式存入文本文件。不过,它的键和值可以是任意形式的,因为程序内容会调用toString()方法将键和值转换为String类型再输出。 3)Map类中map方法分析 - public static class Map extends MapReduceBase implements
- Mapper<LongWritable, Text, Text, IntWritable> {
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
-
- public void map(LongWritable key, Text value,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException {
- String line = value.toString();
- StringTokenizer tokenizer = new StringTokenizer(line);
- while (tokenizer.hasMoreTokens()) {
- word.set(tokenizer.nextToken());
- output.collect(word, one);
- }
- }
- }
Map类继承自MapReduceBase,并且它实现了Mapper接口,此接口是一个规范类型,它有4种形式的参数,分别用来指定map的输入key值类型、输入value值类型、输出key值类型和输出value值类型。在本例中,因为使用的是TextInputFormat,它的输出key值是LongWritable类型,输出value值是Text类型,所以map的输入类型为<LongWritable,Text>。在本例中需要输出<word,1>这样的形式,因此输出的key值类型是Text,输出的value值类型是IntWritable。 实现此接口类还需要实现map方法,map方法会具体负责对输入进行操作,在本例中,map方法对输入的行以空格为单位进行切分,然后使用OutputCollect收集输出的<word,1>。 4)Reduce类中reduce方法分析 - public static class Reduce extends MapReduceBase implements
- Reducer<Text, IntWritable, Text, IntWritable> {
- public void reduce(Text key, Iterator<IntWritable> values,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException {
- int sum = 0;
- while (values.hasNext()) {
- sum += values.next().get();
- }
- output.collect(key, new IntWritable(sum));
- }
- }
Reduce类也是继承自MapReduceBase的,需要实现Reducer接口。Reduce类以map的输出作为输入,因此Reduce的输入类型是<Text,Intwritable>。而Reduce的输出是单词和它的数目,因此,它的输出类型是<Text,IntWritable>。Reduce类也要实现reduce方法,在此方法中,reduce函数将输入的key值作为输出的key值,然后将获得多个value值加起来,作为输出的值。 3.3 新的WordCount分析 1)源代码程序 - package org.apache.hadoop.examples;
- import java.io.IOException;
- import java.util.StringTokenizer;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.util.GenericOptionsParser;
- public class WordCount {
- public static class TokenizerMapper
- extends Mapper<Object, Text, Text, IntWritable>{
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
- public void map(Object key, Text value, Context context)
- throws IOException, InterruptedException {
- StringTokenizer itr = new StringTokenizer(value.toString());
- while (itr.hasMoreTokens()) {
- word.set(itr.nextToken());
- context.write(word, one);
- }
- }
- }
- public static class IntSumReducer
- extends Reducer<Text,IntWritable,Text,IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key, Iterable<IntWritable> values,Context context)
- throws IOException, InterruptedException {
- int sum = 0;
- for (IntWritable val : values) {
- sum += val.get();
- }
- result.set(sum);
- context.write(key, result);
- }
- }
- public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
- if (otherArgs.length != 2) {
- System.err.println("Usage: wordcount <in> <out>");
- System.exit(2);
- }
- Job job = new Job(conf, "word count");
- job.setJarByClass(WordCount.class);
- job.setMapperClass(TokenizerMapper.class);
- job.setCombinerClass(IntSumReducer.class);
- job.setReducerClass(IntSumReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
1)Map过程 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } }
Map过程需要继承org.apache.hadoop.mapreduce包中Mapper类,并重写其map方法。通过在map方法中添加两句把key值和value值输出到控制台的代码,可以发现map方法中value值存储的是文本文件中的一行(以回车符为行结束标记),而key值为该行的首字母相对于文本文件的首地址的偏移量。然后StringTokenizer类将每一行拆分成为一个个的单词,并将<word,1>作为map方法的结果输出,其余的工作都交有MapReduce框架处理。 2)Reduce过程 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } }
Reduce过程需要继承org.apache.hadoop.mapreduce包中Reducer类,并重写其reduce方法。Map过程输出<key,values>中key为单个单词,而values是对应单词的计数值所组成的列表,Map的输出就是Reduce的输入,所以reduce方法只要遍历values并求和,即可得到某个单词的总次数。 3)执行MapReduce任务 - public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
- if (otherArgs.length != 2) {
- System.err.println("Usage: wordcount <in> <out>");
- System.exit(2);
- }
- Job job = new Job(conf, "word count");
- job.setJarByClass(WordCount.class);
- job.setMapperClass(TokenizerMapper.class);
- job.setCombinerClass(IntSumReducer.class);
- job.setReducerClass(IntSumReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
在MapReduce中,由Job对象负责管理和运行一个计算任务,并通过Job的一些方法对任务的参数进行相关的设置。此处设置了使用TokenizerMapper完成Map过程中的处理和使用IntSumReducer完成Combine和Reduce过程中的处理。还设置了Map过程和Reduce过程的输出类型:key的类型为Text,value的类型为IntWritable。任务的输出和输入路径则由命令行参数指定,并由FileInputFormat和FileOutputFormat分别设定。完成相应任务的参数设定后,即可调用job.waitForCompletion()方法执行任务。 4、WordCount处理过程 本节将对WordCount进行更详细的讲解。详细执行步骤如下: 1)将文件拆分成splits,由于测试用的文件较小,所以每个文件为一个split,并将文件按行分割形成<key,value>对,如图4-1所示。这一步由MapReduce框架自动完成,其中偏移量(即key值)包括了回车所占的字符数(Windows和Linux环境会不同)。
图4-1 分割过程 2)将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对,如图4-2所示。
图4-2 执行map方法 3)得到map方法输出的<key,value>对后,Mapper会将它们按照key值进行排序,并执行Combine过程,将key至相同value值累加,得到Mapper的最终输出结果。如图4-3所示。
图4-3 Map端排序及Combine过程 4)Reducer先对从Mapper接收的数据进行排序,再交由用户自定义的reduce方法进行处理,得到新的<key,value>对,并作为WordCount的输出结果,如图4-4所示。
图4-4 Reduce端排序及输出结果 5、MapReduce新旧改变 Hadoop最新版本的MapReduce Release 0.20.0的API包括了一个全新的Mapreduce JAVA API,有时候也称为上下文对象。 新的API类型上不兼容以前的API,所以,以前的应用程序需要重写才能使新的API发挥其作用 。 新的API和旧的API之间有下面几个明显的区别。 新的API倾向于使用抽象类,而不是接口,因为这更容易扩展。例如,你可以添加一个方法(用默认的实现)到一个抽象类而不需修改类之前的实现方法。在新的API中,Mapper和Reducer是抽象类。 新的API是在org.apache.hadoop.mapreduce包(和子包)中的。之前版本的API则是放在org.apache.hadoop.mapred中的。 新的API广泛使用context object(上下文对象),并允许用户代码与MapReduce系统进行通信。例如,MapContext基本上充当着JobConf的OutputCollector和Reporter的角色。 新的API同时支持"推"和"拉"式的迭代。在这两个新老API中,键/值记录对被推mapper中,但除此之外,新的API允许把记录从map()方法中拉出,这也适用于reducer。"拉"式的一个有用的例子是分批处理记录,而不是一个接一个。 新的API统一了配置。旧的API有一个特殊的JobConf对象用于作业配置,这是一个对于Hadoop通常的Configuration对象的扩展。在新的API中,这种区别没有了,所以作业配置通过Configuration来完成。作业控制的执行由Job类来负责,而不是JobClient,它在新的API中已经荡然无存。 |