Spark的Shuffle过程介绍Shuffle WriterSpark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key。 Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去。每个Map的输出结果可能包含所有的Reduce所需要的数据,所以每个Map会创建R个bucket(R是reduce的个数),M个Map总共会创建M*R个bucket。 Map创建的bucket其实对应磁盘上的一个文件,Map的结果写到每个bucket中其实就是写到那个磁盘文件中,这个文件也被称为blockFile,是Disk Block Manager管理器通过文件名的Hash值对应到本地目录的子目录中创建的。每个Map要在节点上创建R个磁盘文件用于结果输出,Map的结果是直接输出到磁盘文件上的,100KB的内存缓冲是用来创建Fast Buffered OutputStream输出流。这种方式一个问题就是Shuffle文件过多。 针对上述Shuffle过程产生的文件过多问题,Spark有另外一种改进的Shuffle过程:consolidation Shuffle,以期显著减少Shuffle文件的数量。在consolidation Shuffle中每个bucket并非对应一个文件,而是对应文件中的一个segment部分。Job的map在某个节点上第一次执行,为每个reduce创建bucket对应的输出文件,把这些文件组织成ShuffleFileGroup,当这次map执行完之后,这个ShuffleFileGroup可以释放为下次循环利用;当又有map在这个节点上执行时,不需要创建新的bucket文件,而是在上次的ShuffleFileGroup中取得已经创建的文件继续追加写一个segment;当前次map还没执行完,ShuffleFileGroup还没有释放,这时如果有新的map在这个节点上执行,无法循环利用这个ShuffleFileGroup,而是只能创建新的bucket文件组成新的ShuffleFileGroup来写输出。 比如一个Job有3个Map和2个reduce:(1) 如果此时集群有3个节点有空槽,每个节点空闲了一个core,则3个Map会调度到这3个节点上执行,每个Map都会创建2个Shuffle文件,总共创建6个Shuffle文件;(2) 如果此时集群有2个节点有空槽,每个节点空闲了一个core,则2个Map先调度到这2个节点上执行,每个Map都会创建2个Shuffle文件,然后其中一个节点执行完Map之后又调度执行另一个Map,则这个Map不会创建新的Shuffle文件,而是把结果输出追加到之前Map创建的Shuffle文件中;总共创建4个Shuffle文件;(3) 如果此时集群有2个节点有空槽,一个节点有2个空core一个节点有1个空core,则一个节点调度2个Map一个节点调度1个Map,调度2个Map的节点上,一个Map创建了Shuffle文件,后面的Map还是会创建新的Shuffle文件,因为上一个Map还正在写,它创建的ShuffleFileGroup还没有释放;总共创建6个Shuffle文件。 ShuffleFetcherReduce去拖Map的输出数据,Spark提供了两套不同的拉取数据框架:通过socket连接去取数据;使用netty框架去取数据。 每个节点的Executor会创建一个BlockManager,其中会创建一个BlockManagerWorker用于响应请求。当Reduce的GET_BLOCK的请求过来时,读取本地文件将这个blockId的数据返回给Reduce。如果使用的是Netty框架,BlockManager会创建ShuffleSender用于发送Shuffle数据。 并不是所有的数据都是通过网络读取,对于在本节点的Map数据,Reduce直接去磁盘上读取而不再通过网络框架。 Reduce拖过来数据之后以什么方式存储呢?Spark Map输出的数据没有经过排序,Spark Shuffle过来的数据也不会进行排序,Spark认为Shuffle过程中的排序不是必须的,并不是所有类型的Reduce需要的数据都需要排序,强制地进行排序只会增加Shuffle的负担。Reduce拖过来的数据会放在一个HashMap中,HashMap中存储的也是<key, value>对,key是Map输出的key,Map输出对应这个key的所有value组成HashMap的value。Spark将Shuffle取过来的每一个<key, value>对插入或者更新到HashMap中,来一个处理一个。HashMap全部放在内存中。 Shuffle取过来的数据全部存放在内存中,对于数据量比较小或者已经在Map端做过合并处理的Shuffle数据,占用内存空间不会太大,但是对于比如group by key这样的操作,Reduce需要得到key对应的所有value,并将这些value组一个数组放在内存中,这样当数据量较大时,就需要较多内存。 当内存不够时,要不就失败,要不就用老办法把内存中的数据移到磁盘上放着。Spark意识到在处理数据规模远远大于内存空间时所带来的不足,引入了一个具有外部排序的方案。Shuffle过来的数据先放在内存中,当内存中存储的<key, value>对超过1000并且内存使用超过70%时,判断节点上可用内存如果还足够,则把内存缓冲区大小翻倍,如果可用内存不再够了,则把内存中的<key, value>对排序然后写到磁盘文件中。最后把内存缓冲区中的数据排序之后和那些磁盘文件组成一个最小堆,每次从最小堆中读取最小的数据,这个和MapReduce中的merge过程类似。 MapReduce和Spark的Shuffle过程对比
Shuffle后续优化方向通过上面的介绍,我们了解到,Shuffle过程的主要存储介质是磁盘,尽量的减少IO是Shuffle的主要优化方向。我们脑海中都有那个经典的存储金字塔体系,Shuffle过程为什么把结果都放在磁盘上,那是因为现在内存再大也大不过磁盘,内存就那么大,还这么多张嘴吃,当然是分配给最需要的了。如果具有“土豪”内存节点,减少Shuffle IO的最有效方式无疑是尽量把数据放在内存中。下面列举一些现在看可以优化的方面,期待经过我们不断的努力,TDW计算引擎运行地更好。 MapReduceShuffle后续优化方向
SparkShuffle后续优化方向Spark作为MapReduce的进阶架构,对于Shuffle过程已经是优化了的,特别是对于那些具有争议的步骤已经做了优化,但是Spark的Shuffle对于我们来说在一些方面还是需要优化的。
|