(5)回归。回归是一种统计估计技术,目的是将每个数据对象映像到真正有意义的预测价值。回归包括曲线拟合、预测、建模的因果关系和测试的科学假设变量之间的关系。回归的常用工具包括线性回归和逻辑回归。 (6)序列发现。序列发现是关联识别或超时模式。目的是模拟序列产生过程的状态,提取和报告偏差和超时趋势。序列发现的常用工具是统计和集合理论。
(7)可视化。可视化指数据显示从而使用户能查看复杂的模式。
一般与其他的数据挖掘模型一起使用,可以更明白地了解已发现的模式或关系。可视化模型的典型例子是三维图形。
3.根据数据挖掘技术进行分类的文章分布统计
根据数据挖掘技术进行文章分类如表1。
表1 关于数据挖掘技术的文章分类 本文的研究有以下几个重要的意义:(1)数据挖掘技术在CRM中的应用研究,在将来会明显地增加。(2) 34种数据挖掘技术已经被应用到CRM里,神经网络是最常用的技术。87篇文章中30篇(占34.5%)是关于神经网络;其次是决策树21 篇(占24.1%);关联规则20篇(23.0%)。本研究还有一些局限性。首先,此次研究只调查发表在2000年到2006年之间的文章,而且这些文章都是基于关键词“客户关系管理”和“数据挖掘”的搜索而得到的。其次,本研究所用的文章是在7个在线数据库找到的,可能还有其他的学术期刊能够提供一个更全面的有关数据挖掘在CRM中的应用的文章。最后,非英语出版物被排除在这个研究。
|