大数据的关键技术有哪些?
2021-3-5 20:43 |
查看: 3219|
评论: 0
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。那么,大数据的关键技术有哪些呢?今天就跟随小编一起来了解下吧! 1、数据收集 大数据时代,数据的来源极其广泛,数据有不同的类型和格式,同时呈现爆发性增长的态势,这些特性对数据收集技术也提出了更高的要求。数据收集需要从不同的数据源实时的或及时的收集不同类型的数据并发送给存储系统或数据中间件系统进行后续处理。 2、数据预处理 数据的质量对数据的价值大小有直接影响,低质量数据将导致低质量的分析和挖掘结果。广义的数据质量涉及许多因素,如数据的准确性、完整性、一致性、时效性、可信性与可解释性等。 3、数据存储 分布式存储与访问是大数据存储的关键技术,它具有经济、高效、容错好等特点。分布式存储技术与数据存储介质的类型和数据的组织管理形式直接相关。 4、数据处理 分布式数据处理技术一方面与分布式存储形式直接相关,另一方面也与业务数据的温度类型(冷数据、热数据)相关。目前主要的数据处理计算模型包括MapReduce计算模型、DAG计算模型、BSP计算模型等。 |
免责声明:
除非特别声明,文章均为投稿或网络转载,仅代表作者观点,与大数据中国网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如果本文内容有侵犯你的权益,请发送信息至ab12-120@163.com,我们会及时删除
最新评论
最新新闻
最新新闻