搜索
大数据中国 首页 热点综合 人工智能 查看内容
2022爱分析·数据智能应用实践报告
2022-9-7 20:08 | 查看: 3508| 评论: 0

5.政策合规要求推动隐私计算平台快速渗透

5.1政策合规驱动隐私计算长足发展

随着数字化进程的深化、数据应用场景的拓展,越来越多的企业及机构发现仅挖掘内部数据价值不足以应对快速变化的市场环境及用户需求,如金融机构需要借助其他机构数据完善风控模型、实现精准营销;政府单位需要打通多部门数据提高政府治理水平、提升公共服务效能;医院需联合多家医疗机构共同完成罕见病全基因组关联分析等。企业或机构需要通过数据共享协作提升运营效率、提升服务价值。

与此同时,对数据流通安全的担忧成为数据共享协作的阻碍。一方面,国家加强对数据分享及利用的监管,相继颁布《数据安全法》及《个人信息保护法》,严格限制数据的不安全流通;另一方面,数据已经成为企业立身之本,企业需要保护自身数据资产,保护数据隐私。

图 13: 隐私计算发展驱动因素

隐私计算能实现数据共享协作过程中的“可用不可见”,保护数据隐私安全、满足合规要求,被企业广泛采用。企业对隐私计算技术的需求主要体现在以下几方面。

  • 功能完善,提供全面数据安全解决方案。不同业务场景下企业能接受的安全假设前提不同,如风控、营销场景下,企业能接受可信第三方,采用联邦学习实现隐私计算;而在医疗多中心合作模式下,医院会面临串谋攻击、环境攻击、模型攻击等内部攻击,需要融合多方安全计算、同态加密以及可信执行环境共同满足数据安全要求。厂商应具备完善的隐私计算保护功能,不限于联邦学习、多方安全计算、可信执行环境以及同态加密,满足不同场景下的安全要求。
  • 满足业务高精度、高性能的计算需求。特殊场景如工业决策、人脸识别以及多中心全基因组分析等,对精度、性能的要求极高。企业应具有底层隐私计算底座开发优化能力,通过提高模型计算效率优化、通信效率优化、网络带宽优化等多种方式满足业务场景高精度、高性能要求。
  • 提供丰富数据源。数据源也是企业实现数据协作过程中的一个主要痛点。数据质量将影响数据协作共享的价值产出,因此企业需要筛选、链接合适的数据源。企业希望厂商具有丰富的 数据源网络,了解各行业数据特点,能为企业提供数据链接建议并推动实现合作。
  • 具备场景专业知识,提供建模及算法支持。金融、医疗等理论门槛较高,企业需要隐私计算厂商具备专业业务知识,能提供恰当的数据分析算法和模型,帮助企业实现产出。

5.2隐私计算保护数据隐私,实现数据可用不可见

不同场景对隐私计算技术能力要求不同。如政务联合计算场景下,同态加密即可满足需求;金融风控场景下,需要具备联邦学习、同态加密以及多方安全计算;而特殊医疗场景如全基因组分析场景下,要求更严格,解决方案需同时具备联邦学习、多方安全计算、同态加密甚至可信执行环境等多种隐私计算技术。一个普适的隐私计算平台解决方案如下图所示。

图 14: 隐私计算平台架构图

案例5:某三甲医院借力隐私计算开展多中心基因组学分析,取得突破研究成果

某三甲医院是一所集医疗、教学、科研为一体的综合性三级甲等医院,脊柱脊髓伤病诊治、关节外伤修复重建、颅脑创伤救治、颅内肿瘤诊疗、器官移植、多发伤、多脏器功能衰竭救治等处于国内领先水平。其中脊柱外科是上海市医学领先专业重点学科,该三甲医院持续推进并引领脊髓型颈椎病研究。

多中心医疗合作面临数据安全、合规风险

全基因组关联分析(Genome-Wide Association Study, GWAS)指在全基因组水平上,以单核甘酸多态性(Single Nucleotide Polytide, SNP)作为分子遗传标记,进行对照或关联性分析,可筛选出与复杂性状相关的突变基因位点,对于疾病预防、诊疗和新药研发意义重大。该三甲医院持续关注强直性脊柱炎(简称“AS”)疾病的预防及治疗研究。由于该三甲医院的样本量不足以支撑一项全基因组关联分析研究,因此需要联合多家医院及院校共享AS患者基因信息进行研究,以开展更好的疾病防治工作。但在跨机构AS基因数据协作和共享过程中存在数据隐私安全隐患、数据合规以及计算难度大等问题:

数据合规趋严,医疗数据难流通

随着我国《数据安全法》及《个人信息保护法》的颁布,对数据安全监管进一步加强,医疗健康信息被列为敏感个人信息,医疗数据的不安全流动被严格限制,只有在采取严格保护措施下方可处理敏感个人信息。目前医院普遍通过数据脱敏隐去患者隐私,但在实际应用中,数据脱敏无明确规定,主观性高,且已被证明存在保护漏洞,被隐去的信息可能被重新推断出来导致患者身份或隐私泄露,无法达成现行法律所要求的“数据匿名化”。对医疗数据隐私泄露的担忧及数据共享合规性上的不足成为生物医疗数据跨机构分享的阻碍。

传统多中心合作仍存在患者隐私泄露或数据篡改风险

传统的多中心合作通常将多家机构数据汇集到第三方平台,由第三方平台集中进行数据处理或计算以实现跨中心协作。但随着参与方增多,数据泄露和被篡改的风险也随之升高,如医疗数据安全保护的责任归属难界定、各个参与方的医疗权限划分不明确,都有可能造成医疗数据共享过程中的泄露、侵犯患者个人隐私或是导致重大医疗事故。

数据体量庞大,数据传输、计算及分析难度大

基因数据具有高通量、高敏感度的特点,例如本案例中,单个个体的全基因组测序数据量接近300G,而全基因组分析需要几百甚至几千个样本量,庞大的数据体量为数据存储、传输、计算及分析带来挑战。

隐私计算方案推动多中心AS全基因组研究顺利开展

为规避隐私泄露风险,实现基因数据分享和联合分析,推动本次AS全基因组关联分析项目顺利开展,该三甲医院决定采购隐私计算解决方案。经过综合考虑产品功能、性能、安全以及团队医疗专业素质等因素,最终选择与锘崴科技进行合作。

锘崴科技成立于2019年, 是一家专业的隐私保护计算技术服务提供商,由“海外高层次青年人才”、隐私计算专家王爽教授,前硅谷知名科学家郑灏博士共同创立,具备深厚的隐私计算、生物医疗信息等领域的学术和实践经验,团队成员多来自IBM、Google、Thermo Fisher等世界五百强企业,业务场景覆盖医疗、金融、保险、政务、安防等。

该三甲医院隐私计算方案从确定需求、实现跨医院平台部署到完成全基因组关联分析获取研究成果,历时近3个月。

图 15: 某三甲医院及合作机构隐私计算部署示意图

明确AS全基因组关联分析多中心合作需求

为实现AS全基因组关联分析,该三甲医院及合作机构对锘崴科技主要提出三点需求:1)隐私计算解决方案能提供AS疾病全基因组关联分析管道所需的模型和工具,并支持灵活组合;2)针对跨机构提供的3000个样本、单个样本300G的数据体量,解决方案应实现计算性能等价于明文计算性能;3)该方案保证数据安全合规。

部署隐私计算一体机平台

锘崴科技的锘崴信®隐私保护计算一体机(以下简称:锘崴信®一体机)包含接口层、计算节点、加密层、协同层等,可实现接入医院数据、完成本地计算、对计算结果加密、将加密后的信息通信至全局模型进行迭代,重复计算流程使模型反复迭代至收敛。基于锘崴信®一体机,该三甲医院及合作机构只需完成安装、接通网络、接通数据、配置规则等步骤即可“开箱即用”,简化搭建应用隐私计算平台的难度。

其中针对数据接通环境,锘崴科技锘崴信®一体机提供丰富的数据接口,该三甲医院及合作机构可以以文件、数据库或者数据接口等形式将数据接入一体机,即可实现在安全可控的前提下与外部合作方进行数据价值交互。

各数据使用方设计并构建全基因组分析管道

为满足AS全基因组关联分析研究需求,锘崴科技开发出GWAS分布式计算技术框架iPRIVATES。该框架融合多种算法,包含可定制的基因组数据预处理模块,基于主成分分析的联邦人口分层模型、基于逻辑回归和对数似然比检验的关联分析模型等。该三甲医院及合作方可灵活地集成和配置不同的全基因组关联分析管道,方便识别SNPs与AS疾病特征之间的关联,获得统计学意义上显著相关的基因位点信息,为后期的实验室验证、确定AS早筛生物标志物提供支持。

实现隐私计算安全

依托iPRIVATES框架,该三甲医院实现与多个跨省合作机构的AS基因组数据链接和共享协作,并在多中心协作过程中,保障基因数据共享全链路隐私安全。一方面基于iPRIVATES框架中的安全联邦学习技术,该三甲医院和合作机构在本地终端节点对基因数据进行计算,仅共享交换经过加密后的中间统计值,不分享明文个体数据,保护数据隐私;另一方面,依托于iPRIVATES框架中可信执行环境技术,该三甲医院和合作机构能防御内部攻击、避免因计算过程被篡改,实现对模型本身的保护。

隐私计算推动多中心合作高效开展,并取得卓越研究成果

依托锘崴科技隐私保护计算技术,该三甲医院及合作机构在满足数据安全合规要求的前提下完成多中心AS疾病全基因组关联分析,取得重大研究成果,获得业内高度认可;并在缩短评审周期、提高统计意义、降低资源消耗等方面有良好表现。

研究成果获广泛认可:基于锘崴科技提供的iPRIVATES隐私计算框架,该三甲医院关于强直性脊柱炎的研究成果发表在生物信息学顶级期刊Briefing in Bioinformatics上,同时获得2019年度上海市科技进步奖一等奖,收到广泛赞誉。

计算结果的可靠性、准确度大幅提升:基于隐私计算解决方案,该三甲医院最终与多家机构达成多中心合作,样本量相较单中心模式提高3-5倍,统计意义也提高1个数量级,研究结果的准确性、普适性大幅提升,有利于AS疾病的预防和诊治工作。

计算效率显著提升,计算结果等价:iPRIVATES框架在算法时间上等价于数据物理集中的方式,且研究成果的特征靶点也与集中式计算结果一致,验证了隐私计算方法在解决生物医疗多中心数据协作方面的可行性和巨大潜力。

大幅缩短数据风险评审周期,降低多中心合作时间成本:传统模式下开展多中心研究前,需要各医院机构评审数据共享风险,评审周期可能长达一至两个季度。而隐私计算方案能实现在数据不出域的情况下完成多中心的合作,规避数据泄露风险,因此能大幅缩短医院多中心合作的评审周期,减少管理流程成本,加速联合研究。

降低资源消耗:传统多中心模式下,所有样本数据需汇总到该三甲医院再进行计算,对存储、算力条件要求极高,而基于联邦学习的多中心模式应用分布式计算框架,物理分散,逻辑集中,对参与方的计算资源损耗和计算条件要求下降。

隐私计算厂商选型决定多中心医疗合作成败

隐私计算方案在该三甲医院AS疾病研究中起到重要作用。回顾该三甲医院实施隐私计算解决方案全流程,隐私计算厂商选型对隐私计算解决方案的成功具有决定性作用,因此对于同样有多中心医疗研究需求的医院,在选择隐私计算厂商时,应注意以下三点厂商能力。

选择有完全自主知识产权,能兼顾性能、精度、安全等多方面实力的隐私计算厂商。由于医疗行业数据体量庞大、精度要求苛刻、数据安全风险高,要求隐私计算厂商除建模能力外,更要具备优化调整隐私计算底座并发性、准确性、算法复杂性等方面的自主开发能力。

选择有丰富医疗经验、具备专业医疗知识的厂商。医疗研究理论门槛高,因此要求隐私计算厂商具有医疗从业经验或是具备专业医疗知识,准确理解不同医疗业务中的数据分析理论,进而提供对应的医疗算法和模型,如在全基因组关联分析中能提供人口分层模型、关联分析模型。甚至更进一步,允许不同医疗机构根据业务能、精度和安全等多方面平衡的解决方案。

选择具有丰富医疗数据源的厂商。生物医疗数据的各项科学研究通常都需要大量样本,单一数据源的数据量很难满足一项研究所需的样本量,因此,能链接多方数据源,诸如医院、第三方检测公司、影像中心等,打通各医院、药企上下游数据网络,为医院聚合大量样本,将能为医院节省大量的资源和时间。


6.属于业务端的数据分析时代来临

图 16: 数据分析平台趋势及解决方案演进示意图

6.1数据分析需求向业务端演进

数据分析平台作为企业数据价值提炼和挖掘的最后一站,长期以来都是企业数字化建设的重中之重。然而,由于数据分析工作的专业性和复杂性,以及数据逻辑与业务逻辑之间的高度差异性,导致数据分析和业务之间存在较高的壁垒,这对企业的数据运营体系和数据文化提出了很高的要求。近年来,随着外部市场环境不确定性的增强,以及企业数据应用的不断深化,数据和业务之间的壁垒在很大程度上影响了企业数据价值的传递,具体而言:

  • 业务人员渐成数据分析工具终端用户。外部环境不确定性增加,市场需求瞬息万变,业务侧对数据分析的需求也随之调整,逐渐脱离固定的分析逻辑和报表,向个性化、多样化转变,而传统数据分析产品在搭建之初就已形成固定的数据分析模型,数据人员需要通过复杂的定制化工作才能解决这些个性化分析需求,导致沟通成本高,等待周期长,数据分析结果滞后于业务动向,业务人员直接参与数据分析的需求不能及时满足。
  • 从集团统一赋能走向场景化建设。数据分析平台往往是企业从全局出发进行建设,由企业数据中心满足所有部门的数据分析需要。随着企业数字化水平提高,各部门逐渐无法满足于来自集团数据中心的固定报表式数据应用,而是希望能够将其特有的业务逻辑与数据分析能力深度结合,形成丰富细致的数据分析场景,满足业务精细化运营的需要。

6.2低门槛、场景化解决方案推动数据与业务深度融合

面对个性化、场景化的分析需求,企业需要通过更加智能化、敏捷化的数据分析解决方案,提升分析的灵活性,填补业务和数据间的壁垒,真正让数据分析能力下沉到一线业务人员和具体业务场景。

1)为业务人员和管理人员搭建新型智能化、自助化分析平台。以智能化、自助化为特点,面向业务人员的新型分析引擎搭载NLP to SQL、机器学习、低代码等技术,提供自然语言等新型交互方式,便捷地低代码、零代码数据分析模板搭建方式,从而简化数据准备、数据挖掘和建模以及数据结果分发全流程操作,为业务人员提供强大的数据分析能力。具体而言,系统能帮助用户轻松访问数据,并实现实时分析,满足业务实时分析需求;系统能帮助用户通过托拉拽操作,生成丰富的可视化图形,并支持指标和维度的切换,以及指标和数据的关联分析,让业务人员通过极为简单的操作实现灵活的数据分析,大大降低数据使用门槛。

案例6:精准高效数据分析实现业务与数据深度融合

某知名互联网教育公司是我国最具影响力的综合性教育集团,拥有素质教育、国际教育、成人及职业教育、教育服务与支持、在线电商等多个业务板块。

多重挑战,数据分析体系面临瓶颈

作为行业领先的教育集团,该公司较早开启了数字化探索,但由于缺少专门的数据管理及分析工具与科学的数据管理体系,在实际运行过程中存在诸多问题:

1. 取数繁琐,数据管理难统一。由于企业内部多系统间未在数据层面打通,数据权限管理不清晰,各分公司频繁需要总部协助从多个系统导出数据并进行初步加工,集团侧数据响应工作量大,反馈慢,效率低。

2. 分析效率受限,个性需求难满足。数据展示工具局限于Excel数据透视表,呈现形式单一,缺乏灵活性。因此,各地分公司在数据标准存在较大差异的情况下,很难满足各分公司对数据分析的个性化需求。

3. 分发不及时,推送慢成本高。在分析结果推送方面,原先数据人员需将分析结果手动发送至指定的群聊或邮箱,耗费大量人工成本,无法在数据分析结果产出第一时间推送到相关负责人。

三措并举,建设高效、精准的数据分析体系

为解决上述问题,该公司决定面向整个集团搭建大数据分析与可视化平台,以实现精准、高效的数据分析。在充分考虑自身管理模式与产品适配性、产品易用性等维度后,最终选择观远数据作为合作伙伴,共建大数据分析与可视化平台。

观远数据作为一站式智能分析与服务提供商,依托在数据分析和商业智能领域多年实战经验,致力于为互联网、金融、零售、消费、高科技、制造等行业的领先企业提供一站式数据分析与智能决策产品及解决方案。截至目前,观远数据已深入服务联合利华、3M中国、招商银行、安踏、华润集团、扬子江药业、元气森林、小红书、蜜雪冰城等400+行业领先客户。

基于BI平台,双方携手搭建了集团——分公司数据分级管控体系,搭起数据分析管理和协作的完整“骨架”,并通过平台强大功能,实现全面自助式分析、自动化推送预警,充盈了数据分析的内容。

图 17: 观远数据分析应用界面

来源:观远数据

1. 数据管理模式改革——中央厨房集中供给,分公司按需取用。首先将多系统数据统一录入集团数据仓库,再推送到观远BI平台数据中心,形成集团统一的基础数据层。随后,集团作为“中央厨房”,统一管理各学校数据访问权限,并依据权限管控机制将数据开放给各学校,无需人工干预;最后,集团将权限下放,由各个学校自主管理内部用户,学校通过观远ETL将数据进行规则梳理和加工后形成各自独有数据集,并基于自身数据集自助生成个性化看板。这种方式不仅保障了数据安全,提升取数效率,更提升了分公司和学校数据管理分析的灵活性。

2. 数据分析能力提升——灵活开放的自助式分析。双方以业务价值链和场景为基础细化数据指标,搭建数据分析模型,并提供丰富的报表类型。

首先将客户全生命周期数据上线观远BI平台,对多个内部细化节点形成对应数据和指标支撑;其次面向自身业务场景与角色划分多个数据分析模块,在对应模块中进行该业务板块的专题分析;同时模块之间可以进行穿透和级联分析,实现对某一数据的精准追溯归因;最后,观远BI平台提供丰富报表图形,一目了然,便捷和精准定位问题环节。

此外,观远BI平台能够面向不同角色提供自助式分析体验。

  • 面向数据分析人员,观远BI平台数据报表能够自动更新,数据人员可根据自身需要灵活搭建数据看板,同时便捷的数据关联和图表穿透功能大大提升了数据人员进行数据指标关联探索的主动性积极性。
  • 面向管理者,观远BI平台为不同管理层级用户提供多维度数据同环比分析,直观的图表贴合管理者信息提取习惯;同时,针对该公司学校管理者较少在PC端办公的情况,观远数据提供移动端入口,使用者能够通过简单上下左右滑动方式查看数据及变化趋势,进行数据穿透,具备极高的灵活性。

3. 分析报表秒级推送——智能化订阅和推送预警。首先,观远BI平台和该公司内部统一认证的系统打通,实现统一登录,精简前端操作链路。其次,针对业务数据每日高频刷新,而管理人员忙于日常办公不能及时查看数据的问题,平台支持自主订阅式推送,降低人力成本;最后,针对重要业务指标,观远BI平台提供预警功能,当某一指标突破阈值,消息能够分秒级自动推送到对应负责人的钉钉,从而能够对问题进行快速感知和响应。

图 18: 观远数据互联网行业数字化运营解决方案


双管齐下,数据分析平台落地推广

在与观远数据合作后,该公司为激活集团内部活用数据的习惯,成立BI推广小组,创造性地推出了集团与学校的三类合作模式,并面向整个集团举办BI挑战赛。

  1. 在BI平台建设初期,公司总部为进行针对性赋能,更好地协助各地分公司实现其个性化数据分析需求,成立BI推广小组,通过与各学校的深入交流了解其业务现状和数据分析能力,最终形成集团与学校数据合作从重到轻的三类模式:

图 19: 集团总部与学校数据合作三类模式示意图

BI推广小组成功将观远BI平台推广至公司各个城市,初步在集团内部形成以BI平台为依托的数据文化。

2.全面上线观远BI平台后,为进一步提升覆盖率,该公司举办了BI挑战赛,各校区根据自身数据需求指定参赛命题,以物质奖励吸引参赛,并各自选择本校区优秀选手在集团层进行比拼,通过评委的细致点评增强选手数据分析能力,同时沉淀优秀作品进行复用。

在集团总部的大力推广下,全集团人员在观远BI平台之上逐步挖掘出集团数据分析潜能,在内部形成了浓厚的数据文化。

一以贯之,BI平台赋能业务与数据深度融合

通过BI平台的全面铺开,该公司原有经营分析逻辑在观远BI平台完美兑现,业务与数据的融合程度逐渐加深,从而提升了整个集团开源节流、敏捷响应的能力。具体而言:

1. 精准数据分析赋能精细化业务运营管控,实现开源节流。针对招生和成本两大重要问题,观远BI平台能够让该公司管理层对于企业关键数据指标进行精准分析和洞察,生源线索回访支持从原来的一月后回访精细到一周、两周、三周后,从而实现精细化业务管控,更有针对性进行扩新,降低运营成本。

2. 高效数据分析与推送赋能业务敏态调整,快速实现业务转型。首先,观远BI平台提升了取数、分析、可视化和结果推送全流程效率,使业务侧从原来的事后响应转变为事中有效干预,大大提升了业务的敏捷性。其次,受“双减”影响,业务变革导致数据分析逻辑也要随之进行重大调整,观远BI的轻量化数据分析能力支持数据分析需求灵活变更,有效节约变革的时间、人力、资金成本,帮助上下快速适应并投入新业务的运转。



2)在不同业务场景选用嵌入数据分析能力的SaaS产品。

出于投入产出比的考虑,大量企业在财务、营销、HR、供应链等各个业务场景中使用垂直领域厂商的SaaS产品进行协作与管理,而这些产品往往在自身领域已经形成高度成熟和体系化的业务逻辑沉淀,而在产品中嵌入数据分析能力则能够帮助企业快速且具有针对性地实现垂直业务场景中的各类分析需求,在各个业务场景实现业务和数据的小闭环,提升精细化运营水平。

案例7:分贝通借助衡石科技数据分析 PaaS平台快速落地数据分析能力,实现产品价值进阶

北京分贝通科技有限公司(以下简称“分贝通”)成立于2016年,致力于为企业提供整合费控、场景、支付、报销于一体的新一代支出管理平台,通过企业支付+员工垫付报销,实现无死角覆盖全部企业费用支出,帮助企业费用管理更高效,更优化。目前已累计服务元气森林、海底捞、汤臣倍健等数千家高成长企业。

数据分析能力渐成客户刚需,自研、外采均难以满足

在业财融合的大趋势下,财务的工作重心正逐渐从基础财会过渡为数据统计、经营分析,企业财务人员及管理层对数据分析和报表的需求强烈。因此,对于分贝通而言,SaaS产品数据分析功能的完备性直接影响到新客拓展与老客续约。

在数据分析功能上线之前,为了解决客户对数据分析报表的需求,分贝通只能通过系统+人工处理的方式,由分贝通的专业顾问帮助客户做数据梳理,再以 PPT形式提供给客户。每份报表需要数个人天的工作量,每月数十份定制报表的需求不仅为分贝通带来了很大的负担,同时也只能服务部分KA客户,难以满足所有客户财务部门定期定量的数据分析、报表需求。

基于上述痛点,分贝通迫切需要在产品中增加数据分析能力,满足各类客户的业务人员和管理层对于数据分析的共性和个性化需求,同时提升公司内部对大客户定制化报表的服务效率。然而分贝通发现,无论是自研还是采购市场上主流BI产品,均不能完全满足当下需求。具体而言:

1. 自研投入成本过高:分贝通产品需聚合20多个场景、API 直连 200家以上供应商,自研数据分析和报表功能需要投入数十位专业数据工程师持续研发6-12个月,且面临较高的研发失败风险;外采+自研的方案下,由于大多数BI厂商缺少产品功能模块化输出的能力,导致采购和维护费用高昂,且需要设置专门的报表团队,成本总计过百万元/年。

2. 外采产品,个性化分析需求难满足:分贝通客户群体行业属性和体量差异大,对于个性化分析需求,市面主流BI产品普遍需要由专业数据分析师根据需求重新搭建分析模型才能实现,无法由业务人员进行自助分析,使用这类产品无法改变分贝通需花费大量人工成本为客户代劳的情况。

嵌入衡石科技数据分析 PaaS 平台,满足场景化数据分析和多租户管理需求

经过多方探寻,分贝通接触到衡石科技,经评估后认为,HENGSHI SENSE 数据分析 PaaS 平台在技术先进性和产品成熟度方面具有明显优势,能够与 SaaS 软件快速实现无缝对接,模板化沉淀分析场景,并一键发布给SaaS多租户,完美贴合分贝通的需求,随即与衡石科技展开合作。

衡石科技是一家数据分析和 BI 领域的标准化软件厂商,核心团队来自Amazon、BAT、秒针等顶级高科技公司大数据部门,以 Analytics as a Service 形态,灵活高效地生成高价值的数据应用场景,赋能各行业客户持续构建数据生产力。

衡石科技为分贝通提供HENGSHI SENSE 数据分析 PaaS 平台,以强大的数据全生命周期管理、分析和可视化能力,以及成熟的多租户功能,帮助分贝通轻松搭建起既能满足客户多样化大数据分析需求,又能实现平台多租户数据自动隔离的在线数据分析体系,全面提升客户企业财务数据分析的便捷性、有效性,同时确保数据安全性。

1. 覆盖数据全生命周期,高效便捷满足客户多样化个性化数据分析需求

  • 高效低门槛HQL语义建模:HENGSHI SENSE 按照 ELT + Embed 的新型分析范式,结合衡石科技独创的 HQL 语义层彻底实现存算分离,数据分析无需依赖数据仓库的数据处理性能,更加高效;统一数据定义及指标定义,大大降低数据分析门槛,真正实现将数据分析能力开放给业务人员使用。
  • 零代码快速搭建业务分析场景:嵌入HENGSHI SENSE分析系统,具备低门槛,易上手的特点,能够5 分钟内拖拉拽完成自助式分析,帮助分贝通实现整个数据链路端到端的处理及搭建分析场景。
  • 丰富场景化模板和自定义分析功能一站式满足分析需求:衡石科技将数据分析能力提供给分贝通,分贝通以多年积累的业财行业 know-how与服务标杆客户的需求洞察为基础,对客户所需分析维度进行整合,再配置到在线数据分析的产品模块中,从而沉淀出丰富实用的数据分析场景。对于分贝通客户可直接应用分贝通已搭建好的费用趋势预测、多维消费对比、行为数据分析等多种多样的分析场景模板,对于大型客户则提供自定义 Dashboard 满足更高阶的财务分析需求。
  • 此外,衡石科技提供的数据分析功能支持多屏自适应,可以在手机端和 PC 端的快速上线分析场景。

图 20: 分贝通嵌入HENGSHI SENCE后的在线数据分析功能示意图

2. 强大的多租户服务支持,适配SaaS产品数据安全与租户数据管控需求

在认证方式集成上,HENGSHI SENSE 内置了Oauth2、企业微信、钉钉、CAS、JWT 等多种认证方式,可实现快速对接,且对于不同的租户可支持不同的认证方式。

在租户数据管控上,HENGSHI SENSE 首先建立了灵活的数据权限管控能力,基于复杂组织架构,给不同的租户配置不同的用户属性值,并按账户进行最小粒度权限控制,实现千人千面的效果;其次,HENGSHI SENSE拥有完整的权限控制体系,可以采用租户管理员自由管控、租户属性控制租户数据库连接等多种管控方式,快速帮助分贝通实现租户数据的完全隔离,保障租户数据安全、准确。

图 21: 衡石科技HENGSHI SENSE产品架构示意图

分贝通依托HENGSHI SENSE强大的开箱即用能力,短时间内完成产品部署和交付,无需专门的实施团队。后续依靠分贝通的客户成功团队,在两周内完成了与分贝通20个2C大平台、150多个2B2代理、70多个终端供应商、自营直采 5000 多个 SKU的对接工作,相比传统BI,部署时间提升10倍以上,有力推动了产品功能快速上线使用。

低成本快速满足客户数据分析需求,带来新客转化与续约持续提升

分贝通上线HENGSHI SENSE,不仅大大节约了分贝通的自研成本和人工制表成本,同时大幅提升了分贝通的市场竞争力,用高效便捷的数据分析能力吸引大批客户,推动公司长远发展。

1. 节约人工成本与研发成本

分贝通产品自此实现报表分钟级创建,实时更新,并通过配置按权限直接批量发布,使分贝通数据分析效率提升十倍以上,无需数据工程师帮助,节省初期研发费用数百万元。

2. 快速迭代升级,提升产品竞争力

分贝通能够借助HENGSHI SENSE 架构的灵活性快速按照新的业务需求和想法迭代数据分析功能,2022年初上线在线数据分析功能后,分贝通在几乎无需依赖衡石科技的情况下,1个月建成费控行业专业分析场景,3个月实现专业的数据分析功能反超业内其他费控SaaS厂商,产品竞争力大大提升。

3. 真实降本,大幅提升客户满意度

分贝通借助HENGSHI SENSE 满足财务在进行费用管理时90%以上的数据分析需求,通过数据分析辅助规则设定后,为分贝通每家客户平均节省20% 以上开支,直接优化了终端企业的费用支出。同时,分贝通数据分析模块可以直接生成业务回顾报告供财务人员高效汇报工作,将产品价值直接传递到客户企业核心管理层,大大加深客户对分贝通产品价值认同。


免责声明: 除非特别声明,文章均为投稿或网络转载,仅代表作者观点,与大数据中国网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如果本文内容有侵犯你的权益,请发送信息至ab12-120@163.com,我们会及时删除

最新评论

关闭

站长推荐上一条 /1 下一条

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-12-27 20:12 , Processed in 0.064992 second(s), 23 queries .

返回顶部