目前企业已经进入全新的大数据时代。在高带宽、移动的、网络环境中工作和生活的我们,会产生大量的数据,这些都成为大数据的来源,而这些信息很少存 在于同一个地方。在几微秒中,信息就能够发布给世界各地的很多人。企业的高管门(包括CEO、CIO、CSO等)都必须面对因为大数据带来的风险和安全挑 战,并规划好如何去应对他们。本文将讨论如何看待非结构化数据相对于传统的结构化数据带来的安全风险和挑战以及多层面防护方法。 识别非结构化数据与结构化数据安全保护的差异 信息通常被归类为结构化形式的或非结构化形式的。不同的类型有不同的保护方法。举个例子来说,非结构化的Excel电子数据表实际上包含结构化的数 据。在 经典的术语中,结构化的数据是指数据符合某种严格的数据模型和限制的模型。比如,模型可以定义一个业务流程控制信息流经过一些面向服务的架构(SOA)系 统,或者也可定义数据如何在内存的一个数组中存储。但是对于大多数IT和数据库管理专家来说,结构化数据是驻留在数据库中,并基于数据库架构和相关数据库 规则被组织的信息。而作为一个安全专家来说,这就意味着两个重要的事情:
所以,因为你知道结构化数据是什么样的以及它驻留在哪里,你有严格的控制机制来决定谁能访问它。对于结构化数据定义和应用安全控制相对简单,要么使用结构内置的特性或者专门为特定结构设计的第三方工具即可完成控制。 而在相比之下,非结构化数据的管理和安全更加困难。非结构化数据能在任何地方、以任何格式、在任何设备上存在,并且在大数据时代能够跨越任何网络。 举个例 子说明非结构化数据的应用复杂性,一个病人的记录从数据库中被提取出来显示在一个网页上,从网页拷贝到数据表格中,附在电子邮件中,然后发送到另外一个网 络的邮箱中。 并且,非结构化的数据没有严格的格式。当然,我们的Word文档,电子邮件等符合定义它们内部结构的标准;然而,它们其中包含的数据几乎没有限制。 比如上 面列举的那个病人记录的例子,假设一个用户改变内容后把它从网页上拷贝到数据表格中,可能删除了某些字段和标题。因为这个信息从一种格式转变成了另外一种 格式,它原始的机构被有效的改变了。 保护存储成结构化的数据和信息是相对简单的。但是随着一个信息从结构化的形式移转变为非结构化的时候,这个情况就会变得非常的复杂。考虑这样一个例 子,很 多分析人士的报告表明在当前的企业组织中,80%或者超过80%的电子信息是非结构化的,还有非结构化数据增长的速度是结构化数据的10到20倍。也考虑 一下媒体上的新闻文章不断强调知识产权的窃取、信息的意外丢失、数据的恶意使用等,最核心的问题就是非结构化的数据。在2010年,全球总的非结构化的数 据估计大概有100万PB(1048576000000GB),被认为将以每年25%的速度增加。我们显然需要去理解我们如何保护非结构化数据的安全。 非结构化数据需安全保护的“三态” 非结构化的数据在任何给定的时间总是处在三种状态中的一种:非使用、传输中、使用中。非使用也就是在存储设备中;它可能在传输中意味着它从一个地方 被拷贝 到另一个地方。或者,它可能在使用中(被一些应用程序打开着)。比如一个PDF文件,它可能存储在一个USB设备上,不在使用状态;同一个PDF文件可能 从USB设备拷贝,并附在电子邮件中发送到因特网上。PDF从USB设备上被拷贝,通过很多州到电子邮件服务器,通过网络从发件箱到收件箱。最后,收件人 收到邮件并打开PDF文件,在那个时刻非结构化数据处于使用状态(驻留在内存中),在一个应用程序的控制下(例如Adobe Reader阅读器),并被呈现给可以交互的用户。 |