大数据与机器智能都是IT界的宠儿,这两者有时会被对此了解不够深入者所混淆,但机器智能和 大数据分析相去甚远,虽然技术有交集,但两者完全不是一个东西。 当前机器智能的威力在2B上体现的比较多,在2C上体现的还不明显。最体现机器智能成就的两类2C产品一个是Google Now这样的语音助手,一个是自动驾驶汽车,而即使是语音助手其应用比率也还需要提高。如果说机器智能是互联网量级的技术变革,那这肯定只是开头,后面故事还长。 那在这浪潮中谁更可能会被碾压? 第一类是对机器智能无知觉的人。 有新闻报道很多汽车厂商感受到了Google无人驾驶汽车的威胁,准备开始做无人驾驶了。正常情形下这很难成功,因为Google无人驾驶汽车的核心根本不是汽车,而是机器智能,两个公司在机器智能上有多大差距在这产品上就有多大差距。而我们可以认为汽车公司有很高的机器智能水平吗?如果没有,那怎么成功。 同样我们也怀疑Pepper这种机器人的前景,越到后来越是机器智能(需要有大数据支撑)决定这类产品的体验和价值,把它单纯看做一种终端产品无疑的是危险的,更何况它还是一个奇特的偏娱乐的2C定位。 第二类是掉到思维陷阱里的人。 这点对国内企业特别有意义。因为国内某些很流行的思维模式会在这浪潮下死的比较难看。 这里面最危险的一种叫互联网时代已经不需要核心竞争力。这观点配合上当前顶级的一些互联网公司基本上模式取胜,确实没有什么核心技术,说服力立刻大增。 但实际上这是非常片面上,在这点上彼得蒂尔更实在些,在《从0到1》里,他不单把“专利技术”列为垄断企业核心特征的第一点,接下来才是网络效应和规模效应,此外还专门开辟了一章写“秘密”。在这点上华为的选择确实与其它企业不太一样。 我们现在这种不需要核心竞争力的想法会带来很大的危险。有网络效应、规模效应支撑的地方可能还好,那里确实可以不太需要核心竞争力,只要看得准跑得快,一样可以有成绩,但机器智能的特征与互联网不同,所以它带来的世界很可能无法使用上述规则。 互联网自身很像是基础设施,所以前些年还经常被称作信息高速公路,而基础设施是面向所有人的所以模式比较关键。 机器智能则更像一种单点但价值高的技术,比如高级的加密算法、高性能的CPU等,所以技术等级会很关键。你设计、生产模式再好,技术工艺水平不到,航空发动机该造不出来还是造不出来。而一旦需要高价购买,那自己就会变成产业链条的下游。 正因为这种不同,所以适合前者的模式不一定适合后者。这对研发模式影响最大。
更多干货分享、行业资讯、可视化视频教学,微信号: 大数据魔镜(TheMagicMirror613 ) 还有更多大礼!好礼送不停!
|