精准大数据之银行客户案例 智树科技于上上周五与精准数源大数据部门就银行大数据为主题,开展了网络研讨会。探讨以银行客户为切入点,大数据在金融行业的应用。大致内容整理: 一、 业务驱动 银行应用大数据,主要是由其业务驱动。应用大数据的业务驱动主要由精准营销、风险控制、改善经营和服务创新四个方面组成。 1、精准营销: 互联网时代的银行在互联网金融的冲击下,迫切的需要掌握更多用户信息,继而构建用户360度立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。 2、风险控制: 应用大数据技术,可以统一管理银行内部多源异构数据与外部征信数据,可以更好的完善风控体系。内部可保障数据的完整性与安全性,外部可控制用户风险。 3、改善经营:通过大 数据分析方法改善经营决策,为管理层提供可靠的数据支撑,使经营决策更加高效、敏捷,精确性更高。 4、服务创新:通过对大数据的应用,改善与客户之间的交互、增加用户粘性,为个人与政府提供增值服务,不断增强银行业务核心竞争力。 除以上四点之外,银行等金融机构应用大数据也有政府政策的原因。在十二五规划中,大数据已不再是只是专有名词,大数据已然上升为国家战略。随着国家对数据的重视、对国产化的支持以及对开源架构的呼声越来越高,使得银行等金融机构对大数据技术的选择成了必然趋势。 二、 数据类型 银行多源异构的数据类型是首先需要被考虑的。只有将多源异构的数据处理好,为应用建设打好基础,银行建设的大数据项目才有意义。银行的数据类型可分为结构化数据、半结构化数据与非结构化数据三大类型。 1、结构化数据:结构化的数据来源自银行运营数据仓储(ODS)和数据仓库(EDW)。EDW为企业提供分析决策服务,ODS主要实现企业数据整合、共享和准实时运营监控等功能。而通过Hadoop等组件的应用可以将数月前甚至几年前的历史数据进行迁移保存。在分布式存储结构下,结构化数据的存储计算可以得到巨大的改善,可对海量离线数据进行离线分析,将离线数据优势最大化,为银行用户打造立体用户画像提供最全面的数据支撑。 2、半结构化数据:半结构化数据的整合在数据整合中是最为复杂的。银行可对接来源于银联数据和其他的金融机构所提供的不同类型数据库或Excel等的数据。 “打通”多源异构的数据是项目中遇到的最困难的部分,数据整合完毕可快速进行建模分析。 3、非结构化数据: 银行对于非结构化的处理的方法还是比较原始的。非结构化数据涵盖的范围比较广泛,有新闻,视频,图片以及社交网络等数据,此类数据的数据量相当巨大,但以后对银行的增值会难以估量。 三、 数据流向架构图 1、大数据基础平台:国外厂商的产品CDH、HDP等,国内厂商的产品TDH、ADH等,以上产品均可为企业用户提供大数据基础的存储与计算服务。 2、数据处理加工平台:主要对大数据基础平台提供数据,进行建模分析。一可迁移银行已有的主题模型,比如销售主题、财务主题、风控主题等一系列主题迁移至大数据平台上。二可对接服务机构创新性模型,比如半结构化数据、非结构化数据等的模型进行迁移。 3、数据服务共享平台:目前银行应用的较少。总行应用共享平台,可为支行与分行提供服务,比如支行与分行的客户经理在上班之前可用手机接收总行的推送信息,推送信息包括预测客户经理的顾客贷款、购买理财产品等的概率,提升服务质量,提高服务精度,增加成单量。 目前接触的银行中,做到第二层级数据处理加工的比较多。银行会做好用户画像,做一些简单的客户分析。至于第三层级数据服务共享平台,做的银行较少,而且总行应用共享平台,怎样提供服务给支行,支行怎样提供给分行,还需要理好思路进行探讨。总体来讲,数据流向的大致思路是通过数据源的接入获取更加全面的数据,通过构建或迁移相关模型,为共享平台提供服务。流程如下: 数据源接入——模型构建——服务共享
|