搜索
查看: 1149|: 0

电科华云带你领略金融大数据

[复制链接]

4

主题

0

回帖

50

积分

注册会员

积分
50
发表于 2016-8-9 17:03:01 | 显示全部楼层 |阅读模式
本帖最后由 路过_wrJ8Z 于 2016-8-9 17:10 编辑

大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。
大数据金融的内容
基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。目前,大数据服务平台的运营模式可以分为以阿里小额信贷为代表的平台模式和京东、苏宁为代表的供应链金融模式。大数据的4V特点: Volume (大量)、 Velocity (高速)、 Variety (多样)、 Veracity (精确)。
大数据金融模式广泛应用于电商平台,以对平台用户和供应商进行贷款融资,从中获得贷款利息以及流畅的供应链所带来的企业收益。随着大数据金融的完善,企业将更加注重用户个人的体验,进行个性化金融产品的设计。未来,大数据金融企业之间的竞争将存在于对数据的采集范围、数据真伪性的鉴别以及数据分析和个性化服务等方面。
大数据金融的运营模式
大数据金融分为平台金融和供应链金融两大模式。
平台金融模式中,是平台企业对其长期以来积累的大数据通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析。譬如现在众所周知的阿里金融,以及未来可能进入这一领域的电信运营商等。
供应链金融模式,是核心龙头企业依托自身的产业优势地位,通过其对上下游企业现金流、进销存、合同订单等信息的掌控,依托自己资金平台或者合作金融机构对上下游企业提供金融服务的模式,譬如京东金融平台、华胜天成供应链金融模式等。
特点:数据量巨大、数据的多样性、数据的价值性
优势:
大数据金融有着传统金融难以比拟的优势。互联网的迅速发展不仅极大扩展着企业拥有的数据量,也使得企业更能够贴近客户,了解客户需求,实现非标准化的精准服务,增加客户黏性;企业通过自己的征信系统,实现信用管理的创新,有效降低坏账率,扩大服务范围,增加对小微企业的融资比例,降低了运营成本和服务成本,可以实现规模经济。
大数据能够通过海量数据的核查和评定,增加风险的可控行和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。支持业务的精细化管理。虽然银行有很多支付流水数据,但是各部门不交叉,数据无法整合,大数据金融的模式促使银行开始对沉积的数据进行有效利用。大数据将推动金融机构创新品牌和服务,做到精细化服务,对客户进行个性定制,利用数据开发新的预测和分析模型,实现对客户消费模式的分析以提高客户的转化率。大数据必将给金融企业带来更多更新的基于数据的业务和内部管理优化机会。
大数据金融的特征
1.网络化的呈现。在大数据金融时代,大量的金融产品和服务通过网络来展现,包括固定网络和移动网络。其中,移动网络将会逐渐成为大数据金融服务的一个主要通道。随着法律、监管政策的完善,随着大数据技术的不断发展,将会有更多、更加丰富的金融产品和服务通过网络呈现。支付结算、网贷、P2P、众筹融资、资产管理、现金管理、产品销售、金融咨询等都将主要通过网络实现,金融实体店将大量减少,其功能也将逐渐转型。
2.基于大数据的风险管理理念和工具。在大数据金融时代,风险管理理念和工具也将调整。例如,在风险管理理念上,财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。交易行为的真实性、信用的可信度通过数据的呈现方式将会更加重要,风险定价方式将会出现革命性变化。对客户的评价将是全方位、立体的、活生生的,而不再是一个抽象的、模糊的客户构图。基于数据挖掘的客户识别和分类将成为风险管理的主要手段,动态、实时的监测而非事后的回顾式评价将成为风险管理的常态性内容。
3.信息不对称性大大降低。在大数据金融时代,金融产品和服务的消费者和提供者之间信息不对称程度大大降低。对某项金融产品(服务)的支持和评价,消费者可实时获知该信息。
4.高效率性。大数据金融无疑是高效率的。许多流程和动作都是在线上发起和完成,有些动作是自动实现。在合适的时间,合适的地点,把合适的产品以合适的方式提供给合适的消费者。同时,强大的数据分析能力可以将金融业务做到极高的效率,交易成本也会大幅降低。
5.金融企业服务边界扩大。首先,就单个金融企业而言,其最合适经营规模扩大了。由于效率提升,其经营成本必随之降低。金融企业的成本曲线形态也会发生变化。长期平均成本曲线,其底部会更快来临,也会更平坦更宽。其次,基于大数据技术,金融从业人员个体服务对象会更多。换言之,单个金融企业从业人员会有减少的趋势,或至少其市场人员有降低的趋势。
6.产品的可控性、可受性。通过网络化呈现的金融产品,对消费者而言,是可控、可受的。可控,是指在消费者看来,其风险是可控的。可受,是指在消费者看来,首先其收益(或成本)是可接受的;其次产品的流动性也是可接受的;最后消费者基于金融市场的数据信息,其产品也是可接受的。
7.普惠金融。大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。例如,极小金额的理财服务、存款服务。支付结算服务等普通老百姓都可享受到。甚至极小金额的融资服务也会普遍发展起来。传统金融想也不敢想的金融深化在大数据金融时代完全实现。
其实根据车主的日常行车路线、里程、行车习惯、出险记录、职业、年龄、性别,可以给出非常不同的定价。比如一个开中级车,每天固定路线往返几公里通勤的熟练女白领车主,和一个开同样车型每天在珠三角或者长三角跑生意的中年暴躁小老板车主,假设后者出险概率是前者的3倍,那么完全可以定3倍于前者的价格(商业部分)。对于保险公司,前者才是优质客户,后者做了生意也是赔钱货,不如赶到竞争对手那里去。
贷款。现在各种小额贷款、消费贷款、供应链金融,都是在吃4大行懒得吃的散客市场,之所以他们懒得吃,就是怕麻烦。最麻烦的就是授信环节,对于一个没有固定资产等担保物的客户,能授信多少额度是个问题。淘宝能做小微是因为商家的流水在他们手里,白领的消费贷敢做是因为有稳定的现金流收入。但除了淘宝可以做到比较准确的模型,其他的业务都非常的粗放,基本每个领域都是根据几条死规则来做业务。这意味着这个市场还有很大的潜力可以挖掘,比如一个小老板,其实风险不大,他需要100w周转,但你没把握估算他的风险,只敢贷50w出去,就少赚了那50w的利息。
问题是现在整体上受到诸多限制,真正能应用起来的地方不多,限制最大的两个方面:
数据。阿里是因为有淘宝的交易数据,所以是先天优势,传统金融机构根本没有有效的能够拿来建模的数据。倒是各个互联网公司,比如地图、行车、电商、社交等等,有很多零散的数据。但这些公司不可能直接拿自己的命根子来卖钱,国内又没有中间层的数据公司来撮合(目前的商业环境估计很难撮合起来),只有一些灰色的公司在倒数据,这些数据往往是电话号码什么的,使用方式也简单粗暴,谈不上大数据。
政策,比方说费率的问题,说是xx年要放开管制,费率自由化,但到时候真能放开么?放开了,肯定起来一批,倒下一批。都是一轮轮各路势力的利益博弈。
QQ图片20160723164551.jpg

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-11-15 09:59 , Processed in 0.069866 second(s), 28 queries .

快速回复 返回顶部 返回列表