文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。文本挖掘是一个多学科混杂的领域,涵盖了多种技术,包括 数据挖掘技术、信息抽取、信息检索,机器学习、自然语言处理、计算语言学、统计 数据分析、线性几何、概率理论甚至还有图论。 灵玖NLPIR挖掘系统是针对互联网内容处理的需要,融合了自然语言理解、网络搜索和文本挖掘的技术,对原始文本集进行处理和加工,提供中间件处理效果的可视化展示,也可以作为小规模数据的处理加工工具。用户可以使用该软件对自己的数据进行处理。 玖NLPIR挖掘系统是从语义的角度来实现文本挖掘,主要技术功能: 1. 全文精准检索: 支持文本、数字、日期、字符串等各种数据类型,多字段的高效搜索,支持AND/OR/NOT以及NEAR邻近等查询语法,支持维语、藏语、蒙语、阿拉伯、韩语等多种少数民族语言的检索。可以无缝地与现有文本处理系统与数据库系统融合。 2、文档聚类 : 首先,文档聚类可以发现与某文档相似的一批文档,帮助知识工作者发现相关知识;其次,文档聚类可以将一个文档聚类成若干个类,提供一种组织文档集合的方法;再次,文档聚类还可以生成分类器以对文档进行分类。 文本挖掘中的聚类可用于:提供大规模文档集内容的总括;识别隐藏的文档间的相似度;减轻浏览相关、相似信息的过程。 3、文档分类 : 分类和聚类的区别在于:分类是基于已有的分类体系表的,而聚类则没有分类表,只是基于文档之间的相似度。 由于分类体系表一般比较准确、科学地反映了某一个领域的划分情况,所以在信息系统中使用分类的方法,能够让用户手工遍历一个等级分类体系来找到自己需要的信息,达到发现知识的目的,这对于用户刚开始接触一个领域想了解其中的情况,或者用户不能够准确地表达自己的信息需求时特别有用。传统搜索引擎中目录式搜索引擎属于分类的范畴,但是许多目录式搜索引擎都采用人工分类的方法,不仅工作量巨大,而且准确度不高,大大限制了起作用的发挥。 4、自动文摘 : 自动文摘能够生成简短的关于文档内容的指示性信息,将文档的主要内容呈现给用户,以决定是否要阅读文档的原文,这样能够节省大量的浏览时间。简单地说自动文摘就是利用计算机自动地从原始文档中提取全面准确地反映该文档中心内容的简单连贯的短文。 自动文摘具有以下特点:(1)自动文摘应能将原文的主题思想或中心内容自动提取出来。(2)文摘应具有概况性、客观性、可理解性和可读性。(3)可适用于任意领域。 5、新词发现: 从文件集合中挖掘出内涵的新词语列表,可以用于用户专业词典的编撰;还可以进一步编辑标注,导入分词词典中,从而提高分词系统的准确度,并适应新的语言变化。 6、统计分析与术语翻译 针对切分标注结果,系统可以自动地进行一元词频统计、二元词语转移概率统计(统计两个词左右连接的频次即概率)。针对常用的术语,会自动给出相应的英文解释。 随着网络时代的到来,用户可获得的信息包含了从技术资料、商业信息到新闻报道、娱乐资讯等多种类别和形式的文档,构成了一个异常庞大的具有异构性、开放性特点的分布式数据库,而这个数据库中存放的是非结构化的文本数据。结合人工智能研究领域中的自然语言理解和计算机语言学,从数据挖掘出可利用的知识。
|