搜索
查看: 2273|: 0

1.1 当大数据遇到Hadoop

[复制链接]

152

主题

47

回帖

3015

积分

管理员

积分
3015
发表于 2014-1-23 03:11:55 | 显示全部楼层 |阅读模式
1.1 当大数据遇到Hadoop

由于“人力资本”是一个无形的、对成功至关重要的因素,所以多数企业都认为他们的员工才是他们最有价值的财产。其实还有另外一个关键因素——企业所拥有的“信息”。信息可信度、信息量和信息可访问性可以增强企业信息能力,从而使企业做出更好的决策。

要理解企业产生的大量的数字信息是非常困难的。IBM指出在过去仅仅两年的时间里产生了世界90%的数据。企业正在收集、处理和存储这些可能成为战略资源的数据。十年前,Michael Daconta, Leo Obrst, and Kevin T.Smith (Indianapolis: Wiley, 2004)写的一本书《The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management》中有句格言“只有拥有最好的信息,知道怎样发现信息,并能够最快利用信息的企业才能立于不败之地”。

知识就是力量。问题是,随着收集的数据越来越多,传统的数据库工具将不能管理,并且快速处理这些数据。这将导致企业“淹没”在自己的数据中:不能有效利用数据,不能理解数据之间的联系,不能理解数据潜在的巨大力量。

人们用“大数据”来描述过于庞大的数据集,这些数据集一般无法使用传统的用于存储、管理、搜索和分析等过程的工具来处理。大数据有众多来源,可以是结构型的,也可以是非结构型的;通过处理和分析大数据,可以发现内部规律和模式,从而做出明智选择。

什么是大数据的挑战?怎么存储、处理和分析如此大的数据量,从而从海量数据中获取有用信息?

分析大数据,需要大量的存储空间和超级计算处理能力。在过去的十年中,研究人员尝试了各种的方法来解决数字信息增加带来的问题。首先,把重点放在了给单个计算机更多的存储、处理能力和内存等上面,却发现单台计算机的分析能力并不能解决问题。随着时间的推移,许多组织实现了分布式系统(通过多台计算机分布任务),但是分布式系统的数据分析解决方案往往很复杂,并且容易出错,甚至速度不够快。

在2002年,Doug Cutting和Mike Cafarella开发一个名为Nutch的项目(专注于解决网络爬虫、建立索引和搜索网页的搜索引擎项目),用于处理大量信息。在为Nutch项目解决存储和处理问题的过程中,他们意识到,需要一个可靠的、分布式计算方法,为Nutch收集大量网页数据。

一年后,谷歌发表了关于谷歌文件系统(GFS)和MapReduce的论文,MapReduce是一个用来处理大型数据集的算法和分布式编程平台。当意识到集群的分布式处理和分布式存储的前景后,Cutting和Cafarella把这些论文作为基础,为Nutch构建分布式平台,开发了我们所熟知的Hadoop分布式文件系统(HDFS)和MapReduce。

在2006年,Yahoo在为搜索引擎建立大量信息的索引的过程中,经历了“大数据”挑战的挣扎之后,看到了Nutch项目的前景,聘请了Doug Cutting,并迅速决定采用Hadoop作为其分布式架构,用来解决搜索引擎方面的问题。雅虎剥离出来Nutch项目的存储和处理部分,形成Apache基金的一个开源项目Hadoop,与此同时Nutch的网络爬虫项目保持自己独立性。此后不久,雅虎开始使用Hadoop分析各种产品应用。该平台非常有效,以至于雅虎把搜索业务和广告业务合并成一个单元,从而更好地利用Hadoop技术。

在过去的10年中,Hadoop已经从搜索引擎相关的平台,演变为最流行通用的计算平台,用于解决大数据带来的挑战。它正在快速成为下一代基于数据的应用程序的基础。市场研究公司IDC预计,到2016年,Hadoop驱动的大数据市场将超过23亿美元。自从2008年建立第一家以Hadoop为中心的公司Cloudera之后,几十家基于Hadoop的创业公司吸引了数亿美元的风险投资。简而言之,Hadoop为企业提供了一个行之有效的方法,来进行大数据分析。


1.1.1 Hadoop:迎接大数据挑战

Apache的Hadoop通过简化数据密集型、高度并行的分布式应用的实现,以此迎接大数据的挑战。世界各地的企业、大学和其它组织都在使用Hadoop,Hadoop把任务分成任务片,分布在数千台计算机上,从而进行快速分析,并分布式存储大量的数据。Hadoop利用大量廉价的计算机,提供了一个可扩展强,可靠性高的机制;并利用廉价的方式来存储大量数据。Hadoop还提供了新的和改进的分析技术,从而使大量结构化数据的复杂分析变为可能。

Hadoop与以前的分布式方法的区别:

  • 数据先进行分布式存储。
  • 在集群上备份多份数据,从而来提高可靠性和实用性。数据在哪存储就在哪处理,从而消除了带宽瓶颈问题。

此外,Hadoop隐藏了复杂的分布式实现过程,提供了一种简单的编程方法。从而,Hadoop得以提供强大的数据分析机制,包括以下内容:

  • 存储量大——Hadoop能够使应用程序运行在成千上万的计算机和PB级数据上。在过去的十年中,计算机专家认识到,那些曾经只能由超级计算机来处理的高性能应用,可以由大量廉价的计算机一起处理。在集群中,数百台“小”的电脑的聚合计算能力,可以超过一台超级计算机的计算能力,并且价格便宜。Hadoop利用超过数千台机器的集群,在企业可以承受的价格范围内,提供了巨大的存储空间和处理能力。
  • 分布式处理与快速的数据访问——Hadoop集群在提供高效数据存储能力的同时,也提供了快速的数据访问能力。在Hadoop出现之前,应用程序很难并行运行在计算机集群之间。这是因为集群模型在创建共享存储数据时,对I/O性能要求很高。用Hadoop来处理数据,减轻了许多高性能的挑战。此外,Hadoop应用程序处理数据通常都是有序进行的,这就避免了随机的数据访问(磁盘寻道操作),进一步减轻了I/O负载。
  • 可靠性,故障转移和可扩展性——在过去,并行应用程序很难解决集群上机器的可靠性问题。虽然单台机器的可靠性相当高,但是随着群集增加,出故障的概率也随之增加。在数千个节点的集群上,这种日常故障经常发生。由于Hadoop有独特的设计和实施方式,相同的故障将会产生相似的结果。从而,Hadoop可以监测到这些故障,并利用不同的节点重新执行任务。此外,Hadoop有很好的可扩展性,实现无缝地将多个服务器整合到一个集群,并利用它们来存储数据、执行程序。

对于大多数Hadoop用户而言,Hadoop最重要的特征是,将业务规划和基础设施维护进行了清晰的划分。为那些专注于商业业务的用户,隐藏了Hadoop的基础设施的复杂性,并提供了一个易于使用的平台,从而使复杂的分布式计算的问题简单化。


1.1.2 商业界的数据科学

Hadoop的存储和处理大数据的能力经常与“数据科学”挂钩。虽然该词是由彼得·诺尔在20世纪60年代提出的,但是直到最近才引起人们广泛关注。美国雪域大学杰弗里·斯坦顿德教授把“数据科学”定义为“一个专注于搜集、分析、可视化、管理和大量信息保存的新兴领域”。

通常将“数据科学”这一术语用在商业业务分析中,与实际中的“大数据”学科有很大的不同。在数据科学中,业务分析师通过研究现有商业运作模式,来提升业务。

数据科学的目标是从数据提取出数据的真正含义。数据科学家基于数学、统计分析、模式识别、机器学习、高性能计算和数据仓库等来工作,通过分析数据来发现事物发展趋势,并基于收集到的信息开发新业务。

在过去的几年中,许多数据库和编程方面的业务分析师成为了数据科学家。他们在Hadoop生态圈中,使用高级的SQL工具(比如:Hive或者实时Hadoop查询工具)进行数据分析,以做出明智的业务决策。

不只是“一个大数据库”

在本书后面会深入讲解Hadoop,但在此之前,让我们先消除这样的误区——Hadoop仅仅是数据分析师使用的工具。因为对于那些熟悉数据库查询的人,Hadoop工具(如Hive和实时Hadoop查询)提供了较低的门槛,所以一些人认为Hadoop仅仅是以数据库为中心的工具。

此外,如果你正在试图解决的问题超出了数据分析的范畴,并涉及到真正的“科学数据”的问题,这时,SQL数据挖掘技术将明显变得不再实用。例如,大多数问题的解决,需要用到线性代数和其它复杂的数学应用程序,然而,这些问题都不能用SQL很好地解决。

这意味着,使用Hadoop工具是解决这类问题的最好办法。利用Hadoop的MapReduce编程模型,不但解决了数据科学的问题,而且明显简化了企业级应用创建和部署的过程。可以通过多种方式做到这一点——可以使用一些工具,这些工具往往要求开发者具备软件开发技能。例如,通过使用基于Oozie的应用程序进行协调(在本书后面将详细介绍Oozie),可以简化多个应用程序的汇集过程,并非常灵活地链接来自多个工具的任务。在本书中,你会看到Hadoop在企业中的实际应用,以及什么时候使用这些工具。

目前Hadoop的开发,主要是为了更好地支持数据科学家。Hadoop提供了一个强大的计算平台,拥有高扩展性和并行执行能力,非常适合应用于新一代功能强大的数据科学和企业级应用。并且,Hadoop还提供了可伸缩的分布式存储和MapReduce编程模式。企业正在使用Hadoop解决相关业务问题,主要集中在以下几个方面:

  • 为银行和信用卡公司增强欺诈性检测——公司正在利用Hadoop检测交易过程中的欺诈行为。银行通过使用Hadoop,建立大型集群,进行数据分析;并将分析模型应用于银行交易过程,从而提供实时的欺诈行为检测。
  • 社交媒体市场分析——公司目前正在使用Hadoop进行品牌管理、市场推广活动和品牌保护。互联网充满了各种资源,例如博客、版面、新闻、推特和社会媒体数据等。公司利用Hadoop监测、收集、汇聚这些信息,并提取、汇总自身的产品和服务信息,以及竞争对手的相关信息,发掘内在商业模式,或者预测未来的可能趋势,从而更加了解自身的业务。
  • 零售行业购物模式分析——在零售行业,通过使用Hadoop分析商店的位置和它周围人口的购物模式,来确定商店里哪些产品最畅销。
  • 城市发展的交通模式识别——城市发展往往需要依赖交通模式,来确定道路网络扩展的需求。通过监控在一天内不同时间的交通状况,发掘交通模型,城市规划人员就可以确定交通瓶颈。从而决定是否需要增加街道或者车道,来避免在高峰时段的交通拥堵。
  • 内容优化和内容参与——企业越来越专注于优化内容,将其呈现在不同的设备上,并支持不同格式。因此,许多媒体公司需要处理大量的不同的格式的内容。所以,必须规划内容参与模式,才能进行反馈和改进。
  • 网络分析和调解——针对交易数据、网络性能数据、基站数据、设备数据以及其他形式的后台数据等,进行大数据实时分析,能够降低公司运营成本,增强用户体验。
  • 大数据转换——纽约时报要将1100万篇文章(1851至1980年)转换成PDF文件,这些文章都是从报纸上扫描得到的图片。利用Hadoop技术,这家报社能够在24小时内,将4TB的扫描文章转换为1.5TB的PDF文档。

类似的例子数不胜数。企业正在逐步使用Hadoop进行数据分析,从而作出更好的战略决策。总而言之,数据科学已经进入了商界。

不仅仅是针对商业的大数据工具

虽然这里的大多数例子针对于商业,但是Hadoop也被广泛应用在科学界和公有企业。

最近一项由美国科技基金会进行的研究指出,医疗研究人员已经证明,大数据分析可以被用于分析癌症患者的信息,以提高治疗效果(比如,苹果创始人乔布斯的治疗过程)。警察部门正在使用大数据工具,来预测犯罪可能的发生时间和地点,从而降低了犯罪率。同样的调查也表明,能源方面的官员正在利用大数据工具,分析相关的能量损耗和潜在的电网故障问题。

通过分析大数据可以发现模型和趋势,提高效率,从而用新方法来作出更好的决策。
大数据中国(http://www.bigdatas.cn),以数据的力量改变生活!
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2025-1-28 00:51 , Processed in 0.075548 second(s), 24 queries .

快速回复 返回顶部 返回列表