搜索
查看: 4533|: 0

大数据下的逻辑回归训练模型方法论 1

[复制链接]

2

主题

0

回帖

430

积分

中级会员

积分
430
发表于 2014-3-3 13:47:12 | 显示全部楼层 |阅读模式
本帖最后由 byulan 于 2014-3-3 13:57 编辑

在数据膨胀的当今社会里,海量数据中蕴含价值日渐凸显出来。如何有效的挖掘海量数据中的有效信息已经成为各个领域面临的共同问题。以互联网企业为代表的科技公司依据自身的实际需求,开始大量的应用机器学习、数据挖掘以及人工智能等算法获取海量数据中蕴含的信息,并且已经取得了很好的效果。
当今社会已经从过去的信息匮乏,转变为信息泛滥的时代。由于网络以及相关应用的不断普及,网络数据逐渐呈现着”海量,高维”的趋势,如何利用已有的机器学习或者数据挖掘的算法,获取有效信息,已经成为学术界以及工业所共同关注的重点。国内大数据技术服务商百分点公司已将机器学习的相关技术应用到大数据分析中,在百分点合作的某一团购网站,我们选取了10个基于商品和用户的特征属性,结合机器学习中的分类算法,构建了一个基于用户推荐的分类器。在实际应用过程中,该团购网站点击率平均提升19%,下单率提升42%,直接下单率提升了近一倍,从而达到了提高推荐效果的目的。
在本篇文章中将以机器学习的经典算法逻辑回归模型作为预测模型,结合目前百分点为团购网站开发的分类模型作为具体实例,具体讲解一下如何在”海量、高维”数据中有效的训练模型。
什么是逻辑回归模型?
机器学习算法中的逻辑回归模型(Logic Regression, LR),以下简称为LR模型,是一个被广泛应用在实际场景中的算法。在本篇文章主要考虑的对象是基于二元分类逻辑回归预测模型,即分类器识别的类标号为。假设训练集数据为,其中,可以将训练集看成是一个的矩阵,由于在本篇文章中主要针对的是高维的海量数据,但由于哑元变量的存在,数据中存在着大量的0/1值,因此可以将训练集的整体看成是一个高维的稀疏矩阵。
在介绍如何训练模型之前,首先简单的介绍一下逻辑回归模型。逻辑回归模型是一种基于判别式的方法,它假定类的实例是线性可分的,通过直接估计判别式的参数,获得最终的预测模型。逻辑回归模型并不是对类条件密度建模,而是对类条件比率进行建模。假定类条件对数似然比是线性的:
使用贝叶斯公式,我们有:

表示为,因此我们可以得到逻辑回归模型:
作为的估计。
训练逻辑回归模型
当我们确定使用LR模型并且选定了初始特征集,那么我们的下一步就是如何获取最佳的评估参数,使得训练得到的LR模型可以获得最佳的分类效果。这个过程也可以看做是一个搜索的过程,即在一个LR模型的解空间内,如何查找一个与我们设计的LR模型最为匹配的解。为了达到能够获取对应的最佳LR模型,我们需要设计一种搜索策略,考虑按照什么样的准则去选择最优的模型。
如何选择最佳的LR模型,直观的想法就是通过预测模型的结果与真实值的匹配程度评价预测模型的好坏。在机器学习领域中,使用损失函数(loss function)或者代价函数(cost function)来计算预测结果与真实值得匹配程度。损失函数是一个非负实值函数,根据不同的需求,可以设计不同的损失函数。在本篇文章中将作为损失函数,其中是预测模型f基于测试实例X的预测值,Y是测试实例x的真实类标号的值。
在机器学习中常用的损失函数包括以下几种:


  • 0-1损失函数:
  • 平方损失函数:
  • 绝对损失函数:
  • 对数损失函数或对数似然损失函数:
由于模型的输入和输出(X,Y)是随机变量,遵循联合分布P(X,Y),所以损失函数的期望是:

上面的期望公式表示的是理论预测模型关于联合分布P(X,Y)在平均意义下的损失,称为风险函数(risk function)或期望损失(expected loss)。损失函数与风险函数实际上都是为了测量预测模型的分类能力,只是前者是从微观层次上考虑,而后者是从宏观上(平均意义上)考虑。因此我们可以获得关于训练数据集的平均损失,称为经验风险(empiricalrisk)或经验损失(empirical loss),记作:

其中是预测模型关于联合分布的期望损失,而则是模型关于训练样本的平均损失。根据统计学中的大数定理,当样本容量很大的时候,可以将经验损失作为期望损失。但是在训练模型的过程中,由于数据中存在着噪音数据或者数据偏移的问题,导致了训练模型的泛化性非常差,也就是机器学习中著名的过度拟合的问题。为了解决这个问题,需要规则化处理,人为增加约束条件,在经验风险函数上添加上表示模型复杂度的正则化项(regularizer)或惩罚项(penalty term),这种经验风险函数被称作结构风险最小化(Structural Risk Minimization, SRM),可以使用下面的公式表示:

其中用来惩罚模型的复杂度,模型F越复杂,复杂度越大,是系数,用以权衡经验风险和模型的复杂度。

未完,请看下一个帖子大数据下的逻辑回归训练模型方法论 2
http://bigdatas.cn/forum.php?mod=viewthread&tid=59119&fromuid=5965

作者 百分点 付宇

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2025-1-28 00:59 , Processed in 0.066535 second(s), 24 queries .

快速回复 返回顶部 返回列表