搜索
查看: 4893|: 0

电信业与其他行业:社交网络数据的价值

[复制链接]

153

主题

3

回帖

479

积分

中级会员

积分
479
发表于 2014-7-31 09:10:14 | 显示全部楼层 |阅读模式
与传统数据相比,社交网络数据本身就是一种大数据源,即使从很多方面来看,它更像是一种分析方法学。其中的原因在于,执行社交网络分析的过程需要处理已经无比庞大的数据集,此外,还要使用行之有效的方法将处理规模提升几个数量级。

有人会争辩说,移动运营商拿到的全部移动电话的话单或者短信记录本身就是大数据,且这种数据可以用于多种用途。但是,社交网络分析关注多个关系维度而非单个维度,从而可以做到更上一层楼。这也就是社交网络分析可以把传统的数据源变成大数据的原因。

对于现代电话公司,仅仅看通话量是不够的,电话公司还需要把通话作为独立实体进行分析。社交网络分析首先要看有哪些人参与了通话,然后再用更深入的视角进行分析。我们不仅要知道自己给谁打了电话,还要知道我致电的那个人还给谁打了电话,这些人接下来又打给了什么人,依此类推。要想得到社交网络的全景图,我们就得触及系统能够处理的上限。多层客户与客户之间的导航关联以及多层通话都会使得数据量倍增。此外,它还增加了分析的难度,尤其是使用传统工具时的分析难度。

同样的概念也适用于社交网络站点。通过分析社交网络中的某个成员,不难分析出这个成员有多少关联关系,她发短信的频率,她访问站点的频率,以及其他一些指标。但是,当成员与其朋友、与朋友的朋友、与朋友的朋友的朋友都有关联关系时,这时了解网络边界所需要的处理量就会大得多。

一千个成员或用户不难跟踪。但是,他们之间的直接关联关系会上升到百万级别,而再考虑到“朋友的朋友”则会升至十亿级别。这就是社交网络分析是一个大数据问题的原因所在。今天,已经有了大量的应用来分析这种关联关系。

使用社交网络数据

社交网络数据及分析有一些影响深远的应用,其中一种重要的应用正在改变着公司评价客户的行为。和以前只看个人的情况不同,现在参考的是他们的网络整体价值。我们这里谈的例子也同样适用于许多其他的行业,在这些行业里我们同样需要了解人与人或者群体与群体之间的关系,但现在我们关注的是手机用户,因为在这里这种方法的应用范围最广。

假定电信运营商有一个价值相对较低的用户。这名用户只有基本的通话需求,不会为运营商带来任何增值收入。事实也是,不能创造利润的客户就是没有价值的。运营商以往的作法是,只根据他或她的个人账户来对其进行评价。以前如果这名客户打电话投诉或者威胁要更换运营商,公司可能不会挽留他,因为它们认为这名客户并不值得挽留。

使用社交网络分析技术,虽然我们的客户通话账单看似价值不高,但我们可以识别出客户曾经和某些人通过电话,而这些人是有着广泛交际圈的重量级人物。换句话说,客户联系对运营商而言是非常有价值的信息。研究表明,一旦某位成员离开通话的圈子,其他成员很可能会跟着离开,更多的成员开始离开,就像传染病一样。很快,圈内成员开始雪崩般地离开,显然这是坏事一桩。

超越个人价值

社交网络数据非常吸引人的一个好处是,它能够识别出客户能影响的整体收入,而不仅仅是他或她自己提供的直接收入。不同的角度会大大影响投资某个客户的决策。能够产生高影响力的客户需要被细心照料,因为他们能产生本身直接价值以外的更大价值。如果要使其网络整体利益最大化,这种最大化的优先级要高于其个体利益的最大化。

使用社交网络分析,我们可以理解本例中客户对企业的总体价值而非只是其所产生的直接价值。这种处理客户的决策完全不同。电信运营商对客户过度投资的原因是要维护客户网络。我们可以准备好商业案例来维护更广的客户圈,而不只是保护客户个体的价值。

上面的这个例子非常棒,它解释了大数据分析是怎样在以往未曾出现过的新决策环境中产生重大价值的。如果没有大数据,客户会被批准更换运营商,当他的朋友们也随之而去,电信运营商将看到雪崩般的损失。现在目标已经从个体账户的利益最大化转向了客户社交网络利益的最大化。

识别有着广泛联系的客户也能帮助我们把注意力放到最能影响品牌形象的地方。我们可以给有广泛联系的客户自由试用的机会,并记录下他们的反馈。我们要做出努力,让客户主动地参与公司的社交网站站点,激励客户写评论和表达观点。有些公司积极地招募有影响力的客户,给他们奖励、提前试用的机会和其他好处。作为回报,那些有影响力的客户会持续地发挥他们的影响力,因为如果受到优待,他们的语气往往会更加积极主动。

LinkedIn 或Facebook 等社交网站正在利用社交网络分析技术来洞察哪些广告会对何种用户构成吸引。我们关心的并不仅仅是客户自己表达的兴趣,与此同等重要的是,我们还要了解他的朋友圈和同事圈对什么有兴趣。社交成员永远也不会在社交网站上表露自己的全部兴趣,我们也不可能了解到关于他的所有细节。但是,如果客户一大部分朋友都对骑单车感兴趣,我们就可以推导出这名客户也对单车有兴趣,即使他永远也没有直接表达过。

执法部门和反恐部门也可以从社交网络分析中受益。我们可以识别出哪些人和问题人群或者问题个人有联系,甚至有间接联系。我们通常把这类分析称为链接分析。有可能是某个个人或者群体、甚至是某个俱乐部或者餐馆跟坏人有联系。如果我们发现有人和许多坏人在多个地方出入,他或她就会被定位,我们会认为这些人值得更深入地监控分析。虽然这会涉及到隐私问题,但实际上这种分析已经开始被使用。

对于在线视频游戏领域,这类分析也是有价值的。谁在和谁玩?游戏内部的模式是如何变化的?社交网络分析拓展了前面讲到的遥测数据的应用范围。我们可以识别出某位玩家在不同游戏中的首选伙伴。前面我们已经讨论过如何根据玩家个人的玩法对玩家进行分类。玩法相近的那些玩家已经在组队玩游戏了吗?玩家们需要的是不是混搭风格?了解这类信息就可以知道游戏制造商是不是想让玩家组队玩游戏(例如,对玩家提出建议,当玩家登录并开始玩游戏的时候,他应该优先选择加入哪个编组)。

关于组织之间联系的方式还有不少有趣的研究。这些研究最开始关注的是通过电子邮件、电话、短信建立起来的联系。公司各部门之间是不是按照期望的方式在联络?是不是有些员工通过典型渠道之外的方法在联系呢?谁在内部拥有广泛的影响力,且是参与研究如何更好地改善公司内部沟通机制的最佳人选?这类分析可以帮助公司更好地理解人与人之间的沟通方式。

社交网络分析的流行度和影响度一定会持续下去。因为社交网络分析流程本身会保持指数级的增长态势,因而数据源就会变得比初始构想的要大得多。也许最有效的功能是提供关于客户整体影响和价值的洞察,而这种洞察可以完全颠覆企业对客户的看法。

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-11-22 23:50 , Processed in 0.080971 second(s), 24 queries .

快速回复 返回顶部 返回列表