搜索
查看: 2417|: 0

数据挖掘的研究历史和现状

[复制链接]

146

主题

7

回帖

574

积分

高级会员

积分
574
发表于 2014-8-8 08:55:27 | 显示全部楼层 |阅读模式


目录

3.1 历史现状

3.2 出版物及工具

3.3 国内现状

3.4 业界观点



  3.1 研究历史

从数据库中发现知识(KDD)一词首次出现在1989年举行的第十一届国际联合人工智能学术会议上。到目前为止,由美国人工智能协会主办的KDD国际研讨会已经召开了8次,规模由原来的专题讨论会发展到国际学术大会(见表1),研究重点也逐渐从发现方法转向系统应用,注重多种发现策略和技术的集成,以及多种学科之间的相互渗透。1999年,亚太地区在北京召开的第三届PAKDD会议收到158篇论文,空前热烈。IEEE的Knowledge and Data Engineering会刊率先在1993年出版了KDD技术专刊。并行计算、计算机网络和信息工程等其他领域的国际学会、学刊也把数据挖掘和知识发现列为专题和专刊讨论,甚至到了脍炙人口的程度。




  3.2 出版物及工具

此外,在Internet上还有不少KDD电子出版物,其中以半月刊Knowledge Discovery Nuggets最为权威(http://www.kdnuggets.com/subscribe.html)。在网上还有许多自由论坛,如DM Email Club等。至于DMKD书籍,可以在任意一家计算机书店找到十多本。目前,世界上比较有影响的典型数据挖掘系统有:SAS公司的Enterprise Miner、IBM公司的Intelligent Miner、SGI公司的SetMiner、SPSS公司的Clementine、Sybase公司的Warehouse Studio、RuleQuest Research公司的See5、还有CoverStory、EXPLORA、Knowledge Discovery Workbench、DBMiner、Quest等。读者可以访问http://www.datamininglab.com.网站,该网站提供了许多数据挖掘系统和工具的性能测试报告。

3.3 国内现状

与国外相比,国内对DMKD的研究稍晚,没有形成整体力量。1993年国家自然科学基金首次支持我们对该领域的研究项目。目前,国内的许多科研单位和高等院校竞相开展知识发现的基础理论及其应用研究,这些单位包括清华大学、中科院计算技术研究所、空军第三研究所、海军装备论证中心等。其中,北京系统工程研究所对模糊方法在知识发现中的应用进行了较深入的研究,北京大学也在开展对数据立方体代数的研究,华中理工大学、复旦大学、浙江大学、中国科技大学、中科院数学研究所、吉林大学等单位开展了对关联规则开采算法的优化和改造;南京大学、四川联合大学和上海交通大学等单位探讨、研究了非结构化数据的知识发现以及Web数据挖掘。

3.4 国内现状

最近,Gartner Group的一次高级技术调查将数据挖掘和人工智能列为“未来三到五年内将对工业产生深远影响的五大关键技术”之首,并且还将并行处理体系和数据挖掘列为未来五年内投资焦点的十大新兴技术前两位。根据最近Gartner的HPC研究表明,“随着数据捕获、传输和存储技术的快速发展,大型系统用户将更多地需要采用新技术来挖掘市场以外的价值,采用更为广阔的并行处理系统来创建新的商业增长点。”





您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2025-1-9 18:31 , Processed in 0.334610 second(s), 24 queries .

快速回复 返回顶部 返回列表