麦肯锡是最早提出大数据时代已经到来:“各个行业和领域都已经被数据给渗透了,目前数据已成为非常重要的生产因素了。对于大数据处理和挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来。”
大数据概念最早是 IBM定义的,将大数据的特征归纳为 4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。比如,网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。
哪些传统企业最需要大数据服务呢?抛砖引玉,先举几个例子:
(1)对大量消费者提供产品或服务的企业(精准营销);
(2) 做小而美模式的中长尾企业(服务转型);
(3) 面临互联网压力之下必须转型的传统企业(生死存亡)。
对于企业的大数据,还有一种预测:随着数据逐渐成为企业的一种资产,数据产业会向传统企业的供应链模式发展,最终形成“数据供应链”。这里尤其有两个明显的现象:(1) 外部数据的重要性日益超过内部数据。在互联互通的互联网时代,单一企业的内部数据与整个互联网数据比较起来只是沧海一粟;(2)能提供包括数据供应、数据整合与加工、数据应用等多环节服务的公司会有明显的综合竞争优势。
|