搜索
查看: 3247|: 0

运营商可从四方面推进大数据应用

[复制链接]

134

主题

2

回帖

528

积分

高级会员

积分
528
发表于 2014-10-27 11:31:41 | 显示全部楼层 |阅读模式

  传统意义上的海量数据是以结构化数据为主,伴随着近几年物联网、电子商务、移动互联网的快速发展,非结构化新数据和结构化传统数据一起构成了大数据。所以,大数据是时代发展的必然产物,也是传统数据的延伸,是对传统数据在深度和广度上的补充。所以,传统的数据挖掘应用与当前热议的大数据应用是一脉相承的,其本质上都是运营商在数据挖掘基础上开展业务运营、提升运营效率,亦即数据化经营,大数据应用是电信运营商数据化经营的新阶段。

  大数据时代已经到来,如何更好地发挥数据资产的价值,对于电信运营商来说是一个崭新的课题。电信运营商应积极加强技术和人才储备,有序开展大数据关键技术研究与验证,同时要找准大数据应用的切入点,创新数据化运营的商业模式,尽快推动大数据技术应用试验,为大规模应用、推广奠定基础。

  现阶段,电信运营商利用其拥有的大数据,进行全面深入、实时的分析和应用,是应对新形势下的挑战,避免沦为管道化的关键。从大数据的具体应用方向来看,运营商当前应主要集中在四个方向:流量经营精细化、智能客服中心建设、基于个性化服务的客户体验提升以及对外数据服务。

  流量经营精细化

  在流量经营精细化上,大数据应用的价值主要体现在:深入洞察客户、助力精准营销和指导网络优化三个方面。首先,基于客户终端信息、手机上网行为轨迹等丰富的数据,借助DPI(Deep Packet Inspection,深度数据包检测)技术等,建立客户超级细分模型,为各细分群组客户打上互联网行为标签,可以帮助运营商完善客户的360度画像,帮助运营商深入了解客户行为偏好和需求特征;其次,根据客户行为偏好,推送合适的业务,并根据对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,同时也能做到在推送渠道、推送时机、推送方式上满足客户的个性化需求,实现全程精准营销;最后,利用大数据技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准地指导网络优化,实现网络、应用和客户的智能指配。

  智能客服中心建设

  作为运营商与客户接触的第一界面,客服中心(或称客户联络中心)拥有丰富的数据资源,可以称得上是客户信息的“聚宝盆”,利用好客服中心的客户接触数据对于建设智能化客服中心意义巨大。利用大数据技术可以深入分析客服热线呼入客户的IVR行为特征、访问路径、等候时长等等,同时结合客户历史接触信息、基本属性等,可以建立热线呼入客户的智能识别模型。基于客户智能识别模型可以在某类客户下次呼入前预先推测其呼入的需求大体是什么,IVR接入后应该走什么样的节点和处理流程。这样,就可以基于呼入客户习惯与需求的事先预测而设计的按键菜单、访问路径和处理流程,合理控制人工处理量,缩短梳理时间,为客户服务中心内部流程优化提供数据支撑,有助于提升热线服务管理水平,加速热线营销渠道资源整合,有效识别客户投诉风险,助力智能客服中心的建设。

  基于个性化服务的客户体验提升

  大数据时代对于运营商为客户提供服务来说更加侧重于“小”,亦即更加关注每个个体“小我”的个性化需求,而融合了电商、医疗、社交等方面信息的“大”数据正是为了更深入地理解“小我”、服务好“小我”。利用大数据技术,一方面可以建立更全面、丰满的客户画像,另一方面还可以量化分解客户接触信息,识别客户特征与习惯偏好,预测客户可能在何时手机出现故障、何时会产生换机行为等等,为客户提供定制化的服务,优化产品、套餐和定价机制,实现“一户一策”的差异化、个性化服务,提升客户体验与感知。由此可见,大数据将为移动互联网时代的客户服务带来一次变革,给客户服务带来了极大的想象空间和无限的发展前景。

  对外数据服务

  对外数据服务是大数据应用的高级阶段,这个阶段电信运营商不再局限于利用大数据来提升内部管理效益,而是更加注重数据资产的平台化运营。利用大数据资产优势,将数据封装成服务,提供给相关行业的企业客户,为合作伙伴提供数据分析开放能力。例如,Telefonica和Verizon已经成立了专业化数据公司来运作对外数据售卖的服务。再如,如果将无线城市与物联网、电子政务等方面的信息结合起来,将能为电信运营商的数据和政府的政务数据增值,对于打造一个开放数据平台和民生服务平台有重大意义。让数据在不同行业之间流动起来,实现体外循环将能进一步释放数据的价值。当然,以简单的Data Seller模式售卖数据服务时,需要注意保护客户隐私、打消隐私顾虑。


您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-12-24 08:01 , Processed in 0.061310 second(s), 24 queries .

快速回复 返回顶部 返回列表