搜索
查看: 2321|: 0

大数据:人类历史向前的车轮

[复制链接]

165

主题

5

回帖

1123

积分

金牌会员

积分
1123
发表于 2014-11-6 16:57:15 | 显示全部楼层 |阅读模式

  有人说大数据是大“忽悠”,有人说大数据没商业模式,凡此种种都反映出一个问题——大数据落地难。但就此否定大数据,无疑又走到了一个极端。可以把大数据理解为最初的蒸汽机,初期不是也有人驾马车一教高低吗?大数据也是如此!

  传统数据挖掘和应用

  从业务开始应用IT之日起,人们就没有停止过对数据的挖掘和利用。人们总是希望透过一定的技术方法,透视数据背后所隐藏的秘密。

  在传统数据挖掘应用中,OLTP(On-Line Transaction Processing,联机事务处理系统)和OLAP(On-Line Analytical Processing,联机分析处理)是用户最为熟悉的技术应用。

  OLTP也称为面向交易的处理系统,它可以即时地处理输入的数据,及时地回答,因此也称为实时系统(Real time System), OLTP通常是由数据库引擎负责完成的,其所处理的数据也被称为结构化数据。

  OLAP主要用于多个角度、维度分析数据,多用于数据挖掘,为企业决策者提供分析依据。OLAP以数据仓库技术为基础,无论是报表、统计,还是客户数据分群、客户价值分析,以及类似逃税、漏税等数据挖据应用,辅助决策和人工智能的技术应用,历来备受用户重视。

  OLAP数据主要来源于数据仓库、数据集市以及ODS(Operational Data Store,操作型数据存储)。在建模过程中,鉴于数据规格的差异,其数据很难被直接使用,需要经过抽取、清洗、转换和装载的复杂处理过程,所谓ETL(Extraction- Transformation-Loading)。此外,还要通过EAI(Enterprise Application Integration,企业应用集成)将进程、软件、标准和硬件联合起来,以追求对数据价值的分析和挖掘。

  “啤酒和尿布”的故事历来被视为传统数据挖据应用的典范。但对于用户来说,无论是Informatica的Power Center、IBM的DataStage、Teradata的Automation,还是Oracle的ODM,这些专属ETL工具,无论对用户专业技能水准的要求,还是对使用成本都有非常高的要求,因此难以大范围推广应用。其应用也主要集中在在价值密度高的数据,所谓结构化数据。

  大数据价值和路径

  如今,大数据也是如此,根据IDC调查显示,“提高竞争优势”、“削减成本”和“提高客户忠诚度”是用户对于大数据分析的期待。

  谈到大数据,很多人知道大数据具有4个V的特点,即Volume、Variety、Value、Velocity,其中,价值密度低(Value)的特点,就注定了没有办法用传统OLAP方法进行大数据处理。

  但价值密度低并不意味着数据价值低。众所周知,奥巴马竞选总统,大数据功不可没。大数据带给人们无限的遐想。不要小看Facebook、微博、微信等社交媒体的一个“顶”或“赞”,尽管从个体来讲,其传递的信息价值有限,但从群体高度进行审视,结果将大大不同。

  小到总统选举,商业预测,大到一个民族、国家的走势未来,商业经济发展,都有会留有自己的数据印迹,无论多么隐秘的事情,都会留有蛛丝马迹,关键在于缺少能够抓住线索的眼睛。

  大数据不仅需要思考问题的方法,也需要可以挖掘、探索数据的平台和工具。鉴于传统OLAP的局限,NoSQL和列式数据库技术应运而生。

  NoSQL现在更多集中在Hadoop。如果用户技术能力足够强,完全可以驾驭,包括现在的Spark、Cassandra都可以用。其中,Spark是云计算和大数据的集大成者,也是Hadoop的取代者,属于第二代云计算大数据技术,作为一个基于内存计算的云计算大数据平台,在实时流处理、交互式查询、机器学习、图像处理、数据统计分析等方面具有无可比拟的优势。而Cassandra是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,集Google BigTable数据模型和Amazon Dynamo于一身,于2008年被Facebook开源,已经是一种流行的分布式结构化数据存储方案。

  列式数据库技术介于传统关系型数据库和NoSQL数据库之间,Vertica、Greenplum、GBase是国内外几大代表厂商,其中,Vertica、Greenplum已经分别为惠普和EMC公司所并购。从技术特点看,列式数据库主要适合于批量数据处理和即席查询等应用。

  对于大数据应用而言,列式数据库堪称承上启下,可以分别与NoSQL和关系型数据库搭档,应用在大数据处理和应用。

  小结

  目前大数据应用已经不局限在互联网企业,而是开始向传统行业/企业市场蔓延,以x86服务器为基础,无论是Vertica、Greenplum、GBase等列式数据库,还是Cloudera等Hadoop分布式数据库管理和开发工具,大数据服务提供商,如Splunk、Acitan、SAS、Tibco,从硬件、软件平台到大数据分析、应用和展示,一个完整的产业生态链已经比较成熟,未来值得期待。

  毫无疑问,我们正处于一个数据爆炸的时代,移动互联网、社交媒体的发达,为行业/企业研究消费者提供了充足的数据,如何驾驭好大数据,将关系到企业的业务创新。可以说,生长在当下这样的一个时代,企业与用户从没有今日如此之接近,因此大数据堪称未来行业/企业的胜负手。

  未来的市场不再是看不见,摸不着的市场,大数据能力的强与弱,既有可能成为企业、社会乃至一个国家、民族的分水岭,人类文明将迎来前所未有的高速成长,历史的车轮将会提速,滚滚向前!


您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-12-24 01:08 , Processed in 0.146818 second(s), 24 queries .

快速回复 返回顶部 返回列表