搜索
查看: 2260|: 0

【大数据时代】企业应用大数据五点困难和挑战

[复制链接]

167

主题

0

回帖

1242

积分

金牌会员

积分
1242
发表于 2014-12-2 11:06:12 | 显示全部楼层 |阅读模式
当某些企业想要用大数据执行某些计划但是失败的时候,我们最常见的错误是什么呢?最近的一份调查显示在更广泛的领域内超过百分之七十五的大数据或者说是IT项目都是不完善的。我们应该清楚的看到,在找到最有效的解决方法使大数据能够被充分利用开发并为我们所用的道路上仍然有许多困难和挑战。

让我们来列举一部分:

首先,你没有充分利用你的数据

也许,让很多企业都不得不面临大数据的挑战的一个很明显的原因,是缺乏一种通过大数据应用来推动支持决策形成商业智慧的能力。

如果一个线上出版者能够更好地理解读者会在什么时候以及为什么浏览他出版的内容并在他的页面上停留很久,他便能够根据现在和未来的浏览者的需要对内容进行改进。在现存的数据中,驱动价值是产业中最常见的难题之一。

如果大部分的数据库技术在一开始的时候并不了解和满足数据的某些特殊要求,那么它们便需要某种数据定义或者是数据纲要来减缓项目进程。

复杂的数据建模,中间层的目标规划和不断返工,这些与更早的RDBMS关系型数据库管理系统有诸多联系的特点,为探索一种新的充分利用大数据的方式开辟了一条新路。

第二,你已经将公司赌在了免费软件上

通过过去几年的促销循环系统,每一个组织都在考虑有效利用最新最好的解决方案,像ApachePig这样的,都是感觉过去的RDBMS关系型数据库管理系统已经过时而力求创新。事实的确如此,关系型数据库本身无法满足NoSQL数据库能够达到的要求。

免费软件运动已经因为其不真实性而备受批判,主要由哪些抱着不切实的幻想,守望着自己的产品能够成为下一个最畅销的产品或者只有他们自己可以做到这种程度的这种没有什么经验的软件开发者共享。

第三,你彻底的放弃了昂贵的遗留下来的数据系统

我相信数据仓库将会有一个长远的未来。这并不是一个非常大胆的猜想,但是RDBMS关系型数据库管理系统的未来又会怎样?当然不久之后我们将看不到Oracle数据库的终结。

我的数据显示,逻辑型数据仓库(LDW)正在呈上涨趋势。一个仓库是建于由两个或者多个现实数据库合成的单一的接入视图之上的。同样的原因,产业未来应用的发展也正在采集使用NoSQL数据库,这便需要一种新的方式来构建和储存数据仓库。使用RDBMS关系型数据库管理系统的话,一开始会很难去驾驭它,反复做又会花费大量的时间和金钱。

第四,你不了解你的数据

对于任何产业来说,一种进化必然会很快的产生一种知识代沟:你对迎面而来的挑战和解决方法的了解远远落后于那些在特定企业中呆过的人。

第五,你总是贪得无厌

也许在你突袭进入大数据领域中最容易避开的错误就是不要吸收太多的数据。大部分情况下,科技方面的原因导致了这种现象的出现。奇怪的是,从大数据的角度处理整个公司的事情基本上是不可能的,那么为什么不从最底层开始,逐渐积累成功的经验从而使项目一点一点发展起来呢?使用灵活的科学技术,像公司中的 NoSQL关系型数据库。迭代数据仓库的发展会很快出现,同时能够减少重复作业和预付工程成本。

无论你正在处理的是金融数据,特定的保健数据和购物分析还是出版工作和政府情报,这些数据的一致性就在于他们的多变性,复杂性和多样化以及它们不断增加的数量和需求。要想以一种驱动商业价值的方式来处理大量的不断汇集的数据,企业必须要明白众多大数据项目失败的原因,从而避免已经出现过的错误导致的失败。知道不应该做什么和知道应该做什么同样重要,有了这些基本的知识,企业才能快速实现他们短期和长期的各种目标。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-12-23 18:33 , Processed in 0.052491 second(s), 28 queries .

快速回复 返回顶部 返回列表