目前,人们对大数据及其价值的认知各有不同。一部分人认为大数据的价值在于帮助企业各部门获得新的洞察力并付诸行动;另一部分人认为大数据不过是天花乱坠的宣传而已。这两种观点都有可取之处,而有趣的是,这两种观点都成立。尽管外界对大数据大肆宣传,人们还是很快了解到大数据真正价值与空谈之间的区别。
弄清这种区别将非常有助于了解大数据价值并认清仍对大多数企业发展构成主要阻碍的挑战。姑且假设未来相关技术将逐渐成熟,并能通过释放其潜力创造价值。这种预测已在以往多种技术上都得到证实,大数据技术应该也不例外。制约大数据技术发展的主要瓶颈在于它自身的问题:人们会忽略大数据的严重依赖性,或认为这种依赖性仅仅是我们为创造价值而必须接受的前提。
这种依赖性是指用户认为在创造价值前,必须保持数据一致性,或在数据库等持久保存数据的系统内实现数据标准化,这需要企业大张旗鼓,投入数十亿美元,却导致效率低下和重复劳动。因此,在没有创造任何价值前,企业的项目投入已达到70%,用于数据识别、采集、迁移、存储及优化。
令人关注的是,在利用大数据技术真正创造价值的行业内,大数据市场正呈现出不断细分的趋势,且这一趋势已逐渐明朗。我们最好从这些细分市场入手,深入了解大数据价值与空谈之间的区别。
能够体现大数据价值的领域
大数据技术在数据探索、趋势分析、调整机会分析等领域已获得成功应用。这看上去毋庸置疑,而以下两个共同点却不明显,但大数据技术在符合这些共同点的领域内已具有切实的可行性,并已站稳脚跟。
全新的海量交互信息:基于Web的购物与数字化零售、移动端活动、社交媒体互动信息及互联网搜索条件。换言之就是全新的海量同类数据。
重视营销机会:为产品销售提升潜在客户识别成功率,这种技术应用通常由大众化营销与媒体费用承担。
无法体现大数据价值的领域
随着数据同类性降低,导致获得洞察力的成本相应增长,大数据的价值开始降低,而对于大数据综合价值因素的炒作也导入歧途。在谈到典型的企业问题时,大数据鲜有成功案例。原因何在?
这就是企业大部分业务问题与大数据无关的原因。这些业务问题实际上是分布式数据问题:在这种模型下,信息、数据、价值和分析广泛分布在不同的位置、技术平台和数据源内。但我们仍继续使用与以往相同的集中式模型来解决这一日趋严重的分布式问题。当用户能够通过常见的界面外观稳定地访问数据时,这些集中式模型能够发挥很大的作用,这在社交媒体、数字化零售等行业新的成功案例中屡见不鲜。但集中式模型却无法解决银行、保险、医疗行业及其它广泛的业务问题。
目前,企业实现大数据价值需对多种不同数据及功能体系进行数据整合及标准化规划。如不改变现有数据管理机制,那么企业解决方案采用越多的分布式组件,项目回报率越低。
大数据技术促进深度分析及分析性能取得技术突破,其价值毋庸置疑。但这种价值却被数据提取和/或整合成本破坏,导致价值/炒作的底线被轻易冲破。目前,市场在数据价值上多少存在一些分歧,其中一部分行业尚处于初创时期,可保持技术一致性,因此,这些行业可以暂时解决分布式数据的问题。
大多数企业可灵活使用双重数据策略:运用大数据技术对大量同类数据进行深入分析及机会辨别;或运用分布式数据应对运营、风险、管理等复杂但已为人所了解的挑战。人们将能够接受这种双重数据管理策略,充分发现、挖掘并管理大数据技术的价值,并在行业内实现不断灵活创新。 |