搜索
查看: 958|: 0

【大数据时代】浅析供应链该如何有效应用大数据?

[复制链接]

167

主题

0

回帖

1242

积分

金牌会员

积分
1242
发表于 2015-3-25 16:14:54 | 显示全部楼层 |阅读模式
大数据_大数据时代_大数据概念_网络大数据
随着大数据时代的来临,大数据也吸引了越来越多的关注。网络大数据http://www.raincent.com)整合了大数据,大数据概念,cdn,cdn加速,idc,网络测量,网络监测,网络安全测量,网站性能监测,行业分析报告,行业研究报告,免费行业报告等服务为一体,力争打造中国最大的网络大数据中心。
随着供应链变得越来越复杂,必须采用更好的工具来迅速高效地发挥大数据的最大价值。供应链作为企业的核心网链,将彻底变革企业市场边界、业务组合、商业模式和运作模式等。
大数据能给供应链带来什么好处?
供应链管理大数据应用产业目前正处于起步期,未来2年将快速发展。有深度行业积累的供应链协同数据平台将是未来2年资本主要进入的领域。据产业市场研究与分析公司IndustryARC的详细研究,2012年全球大数据市场规模约为69.3亿美元,2013年增长一倍至122.1亿美元左右。预计该市场到2018年将达到404亿美元。
供应链该如何有效应用大数据?
1、资源获取:敏捷、透明的寻源与采购。为新产品、优化成本而寻找新的合格供应商满足生产需求;同时,通过供应商绩效评估和合同管理,使采购过程规范化、标准化、可视化、成本最优化。
2预测:精确的需求预测。需求预测是整个供应链的源头,整个市场需求波动的晴雨表,销售预测的灵敏与否直接关系到库存策略,生产安排以及对终端客户的订单交付率,产品的缺货和脱销将给企业带来巨大损失。
3、供应链计划,与物料、订单同步的生产计划与排程。有效的供应链计划系统集成企业所有的计划和决策业务,包括需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划等。
4、协同效率:建立良好的供应商关系,实现双方信息的交互。良好的供应商关系是消灭供应商与制造商间不信任成本的关键。双方库存与需求信息交互、VMI运作机制的建立,将降低由于缺货造成的生产损失。
5、库存优化。成熟的补货和库存协调机制消除过量的库存,降低库存持有成本。通过从需求变动、安全库存水平、采购提前期、最大库存设置、采购订购批量、采购变动等方面综合考虑,监理优化的库存结构和库存水平设置。
6、物流效率。建立高效的运输与配送中心管理,通过大数据分析合理的运输管理、道路运力资源管理,构建全业务流程的可视化、合理的配送中心间的货物调拨以及正确选择和管理外包承运商和自有车队,提高企业对业务风险的管控力,改善企业运作和客户服务品质。
7、网络设计与优化。对于投资和扩建,企业从供应链角度分析的成本、产能和变化更直观、更丰富也更合理。企业需要应用足够多的情景分析和动态的成本优化模型,帮助企业完成配送整合和生产线设定决策。
8、制造业各行业管理特点突出,在供应链管理上呈现行业管理差异。如汽车行业重点关注准时上线和分销环节、食品饮料行业关注的重点在冷链及配送环节、服装行业的供应链管理重难点在消灭链条上高库存等等。
9、风险预警,在大数据与预测性分析中,有大量的供应链机会。
这么大的投资规模,到底能带来哪些价值呢?
1、创造经营效益,从供应链渠道,以及生产现场的仪器或传感器网络收集了大量数据。利用大数据对这些数据库进行更紧密的整合与分析,可以帮助改善库存管理、销售与分销流程的效率,以及对设备的连续监控。
2、库存优化。比如,SAS独有的功能强大的库存优化模型可以实现在保持很高的客户满意度基础上,把供应成本降到最低并提高供应链的反应速度。其库存成本第一年就可下降15%30%,预测未来的准确性则会上升20%,由此带来的是其整体营收会上升7%10%。当然还有一些其他的潜在好处,如提升市场份额等。
3、B2B电商供应链整合。强大的电商将引领上游下游生产计划-下游销售对接,这种对接趋势是上游制造业外包供应链管理Supply- Chain,只专注于生产ManufacturingProductionChain(R&D)
4、产品协同设计,过去大家最关心的是产品设计。可是现在,在产品设计和开发过程中,相关人员相互协同,工厂与制造能力也在同步设计和开发中。当前的压力在于向市场交付更具竞争力、更高配置、更低价格、更高质量的产品,而同时满足所有这些要求,是制造和工程企业的下一个重大的价值所在。这也正是大数据的用武之地。
5、物流平台规模发展,B-C商业模式整合已经成为现实,但是物流执行平台的建设是拖后腿的瓶颈。多样产品的销售供应链的整合有很大的技术难题,如供货周期、库存周期、配送时效、物流操作要求等,这样的物流中心难度很大,大数据平台建设将驱动整体销售供应链整合。
企业该如何部署大数据?
要让大数据发挥价值,首先要有效的进行大数据处理,要能够共享、集成、存储和搜索来自众多源头的庞大数据。而就供应链而言,这意味着要能够接受来自第三方系统的数据,并加快反馈速度。其整体影响是增强协同性、加快决策制定和提高透明度,这对所有相关人员都有帮助。传统供应链已经在使用大量的结构化数据,企业部署了先进的供应链管理系统,将资源数据,交易数据,供应商数据,质量数据等等存储起来用于跟踪供应链执行效率,成本,控制产品质量。
而当前大数据概念超出了传统数据产生、获取、转换、应用分析和存储的概念,出现非结构化数据,数据内容也出现多样化,大数据部署将面临新的挑战。
大数据在供应链领域的应用刚刚起步,随着供应链的迅速发展,大数据分析,数据管理,大数据应用,大数据存储在供应链领域蕴含巨大的发展潜力,大数据的投资也只有与供应链结合,才能产生可持续、规模化发展的产业。
更多互联网行业最新资讯信息 敬请关注网络大数据:http://www.raincent.com

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2024-11-23 01:52 , Processed in 0.055819 second(s), 24 queries .

快速回复 返回顶部 返回列表