搜索
查看: 597|: 0

NLPIR:大数据挖掘技术引导数据应用

[复制链接]

215

主题

13

回帖

2181

积分

金牌会员

积分
2181
发表于 2018-1-11 15:07:59 | 显示全部楼层 |阅读模式
  今天,大数据(big data)一词正越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据。随着经济社会的发展,大数据可能带来的深刻影响和巨大价值日益被认识,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为我们提供了一种全新的看待世界的方法,其带来的信息风暴正全方位地改变着我们的生活、工作和思维。
NLPIR大数据语义智能教学科研平台21.png
  大数据时代,面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
  NLPIR大数据语义智能教学科研平台是大数据语义智能分析专业的教学科研综合平台。平台以自然语言理解为核心,结合北理工团队多年的科学研究与一线教学经验,以科学严谨的方式,致力于提升学员大数据与人工智能的教学培训、科学研究与工程实践的水平。
  NLPIR大数据语义智能教学科研平台具有一套完善且丰富的教学体系,课程教材、视频教学、实训平台、实验验证和项目案例五位一体。
  NLPIR大数据语义智能教学科研平台教学内容丰富,主要围绕大数据、人工智能和自然语言理解三大核心领域展开,核心内容包括以下几个方面:
  1)科学的大数据观:大数据的定义,科学发展渊源;如何科学看待大数据?如何把握大数据,分别从“知著”、“显微”、“晓义”三个层面阐述科学的大数据观。
  2)大数据技术平台与架构:云计算技术与开源平台搭建;Hadoop、Spark等数据架构、计算范式与应用实践;TensorFlow深度学习平台。
  3)机器学习与常用数据挖掘:常用机器学习算法:Bayes, SVM,深度神经网络等;常用数据挖掘技术:关联规则挖掘、分类、聚类、奇异点分析;深度学习:CNN, RNN, LSTM, Attention模型,seq2seq模型。
  4)大数据语义精准搜索:通用搜索引擎与大数据垂直业务的矛盾;大数据精准搜索的基本技术:快速增量倒排索引、结构化与非机构化数据融合、大数据排序算法、语义关联、自动缓存与优化机制;大数据精准搜索语法:邻近搜索、复合搜索、情感搜索、精准搜索;
  5)非结构化大数据语义挖掘
  语义理解基础:ICTCLAS与汉语分词;内容关键语义自动标引与词云自动生成;大数据聚类;大数据分类与信息过滤;大数据去重、自动摘要;情感分析与情绪计算;不良信息智能过滤.
  6)知识图谱的大数据自动构建与应用:知识图谱概念;知识点的自动发现;基于bootstrapping的知识大数据生成;
  7)NLPIR智能语义平台:NLPIR智能语义分析在线云服务;NLPIR Parser语义分析平台实训;NLPIR智能语义二次开发接口与教程。
  8)大数据应用案例剖析与综述:国家电网大数据应用案例;新媒体传播创新与头条应用;非结构化大数据挖掘。
  移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

大数据中国微信

QQ   

版权所有: Discuz! © 2001-2013 大数据.

GMT+8, 2025-1-8 11:02 , Processed in 0.081533 second(s), 27 queries .

快速回复 返回顶部 返回列表