数据挖掘作为近年来新兴的一门计算机边缘学科,其在国内外引起了越来越多的关注。并且随着数据挖掘技术的不断改进和数据挖掘工具的不断完善,数据挖掘必将在各行各业中得到广泛的应用。 大数据带来的潜在经济价值和社会价值巨大,但这些价值必须通过数据的有效整合、分析和挖掘才能释放出来。数据的整合是建立数据仓库的必要工作,对于结构化数据的整合有很多解决方案和软件工具。目前的挑战是非结构化数据的融合和整合,如:文本数据、图像数据、信号数据、音频数据、视频数据等。 大数据技术及其应用的驱动原因,在于数据管理理念的不断变革。数据管理是利用计算机硬件和软件技术对数据进行有效地收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。 随着现代信息传播技术手段和方式不断丰富,信息获取、信息传递、信息处理、信息再生、信息利用等功能应用日益多样化,智能化信息系统逐渐形成一个信息网络体系,人类社会的生产方式、工作方式、学习方式、交往方式、生活方式、思维方式等发生了极其深刻的变革,互动化、即时性、全媒体等成为常态性的信息生态环境,传统的数据库组织架构和信息服务模式己经难以适应信息社会现实需要,整个信息技术架构的革命性重构势在必行,大数据成为信息技术发展的必由之路。 数据挖掘方法是由人工智能、机器学习的方法发展而来,一般结合传统的统计分析方法、模糊数学以及科学计算可视化技术,以数据库为研究对象,形成的数据挖掘的方法和技术。 北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。 其中KGB(Knowledge Graph Builder)知识图谱引擎是我们自主研发的知识图谱构建与推理引擎,基于汉语词法分析的基础上,采用KGB语法实现了实时高效的知识生成,可以从非结构化文本中抽取各类知识,并实现了从表格中抽取指定的内容等。KGB同时可以定义不同的动作,如抽取动作,并能自定义各类后处理程序。利用KGB知识图谱引擎可以抽取到产品的详细报价信息,方便进行下一步的数据挖掘与图谱构建。 大数据挖掘技术是一个充满希望的研究领域,商业利益的强大驱动力将会不停地促进它的发展。每年都有新的数据挖掘方法和模型问世,人们对它的研究正日益广泛和深入。对海量文本信息进行有效的数据挖掘已经是自然语言处理、信息检索、信息分类、信息过滤、语义挖掘、文本的机器学习等诸多应用领域基础且关键的研究问题,它影响着上层信息服务与信息共享的质量和水平。NLPIR大数据语义智能技术将对中文数据挖掘技术进行深入研究,必将提供出高质量、多功能的中文数据挖掘算法并促进自然语言理解系统的广泛应用。
|