我们常常说,不能度量,就无法增长,数据分析对于企业商业价值的提升有着至关重要的作用。当然,仅仅掌握单纯的理论还远远不够,实践出真知。
提起数据分析,大家往往会联想到一些密密麻麻的数字表格,或是高级的数据建模手法,再或是华丽的数据报表。其实,“ 分析 ”本身是每个人都具备的能力;比如根据股票的走势决定购买还是抛出,依照每日的时间和以往经验选择行车路线;购买机票、预订酒店时,比对多家的价格后做出最终选择。 这些小型决策,其实都是依照我们脑海中的数据点作出判断,这就是简单分析的过程。对于业务决策者而言,则需要掌握一套系统的、科学的、符合商业规律的数据分析知识。 1.数据分析的战略思维 无论是产品、市场、运营还是管理者,你必须反思:数据本质的价值,究竟在哪里?从这些数据中,你和你的团队都可以学习到什么? 1.1 数据分析的目标 对于企业来讲,数据分析的可以辅助企业优化流程,降低成本,提高营业额,往往我们把这类数据分析定义为商业数据分析。商业数据分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策,提供可规模化的解决方案。商业数据分析的本质在于创造商业价值 ,驱动企业业务增长。 1.2 数据分析的作用 我们常常讲的企业增长模式中,往往以某个业务平台为核心。这其中,数据和数据分析,是不可或缺的环节。
通过企业或者平台为目标用户群提供产品或服务,而用户在使用产品或服务过程中产生的交互、交易,都可以作为数据采集下来。根据这些数据洞察,通过分析的手段反推客户的需求,创造更多符合需求的增值产品和服务,重新投入用户的使用,从而形成形成一个完整的业务闭环。这样的完整业务逻辑,可以真正意义上驱动业务的增长。 1.3 数据分析进化论 我们常常以商业回报比来定位数据分析的不同阶段,因此我们将其分为四个阶段。
阶段1:观察数据当前发生了什么? 首先,基本的数据展示,可以告诉我们发生了什么。例如,公司上周投放了新的搜索引擎A的广告,想要比对一周下来,新渠道A比现有渠道B情况如何,A、B各自带来了多少流量,转化效果如何? 又比如,新上线的产品有多少用户喜欢,新注册流中注册的人数有多少。这些都需要通过数据来展示结果,都是基于数据本身提供的“发生了什么”。 阶段2:理解为什么发生? 如果看到了渠道A为什么比渠道B带来更多的流量,这时候我们就要结合商业来进一步判断这种现象的原因。这时候我们可以进一步通过数据信息进行深度拆分, 也许某个关键字带来的流量,也许是该渠道更多的获取了移动端的用户。这种数据深度分析判断,成为了商业分析第二个进阶,也同时能够提供更多商业价值上的体现。 阶段3:预测未来会发生什么? 而当我们理解了渠道A、B带来流量的高低,就根据以往的知识预测未来会发生什么。在投放渠道C、D的时候,猜测渠道C比渠道D好,当上线新的注册流、新的优化,可以知道哪一个节点比较容易出问题;我们也可以通过数据挖掘的手段,自动预测判断C和D渠道之间的差异,这就是数据分析的第三个进阶,预测未来会发生的结果。 阶段4:商业决策 所有工作中最有意义的还是商业决策,通过数据来判断应该做什么。而商业数据分析的目的,就是商业结果。当数据分析的产出可以直接转化为决策,或直接利用数据做出决策,那么这才能直接体现出数据分析的价值。 1.4 数据分析的 EOI 框架 EOI 的架构是包括 LinkedIn、Google 在内的很多公司定义分析型项目的目标的基本方式,也是管理者在思考商业数据分析项目中一种基本的、必备的手段。
其中,我们先会把公司业务项目分为三类:核心任务,战略任务,风险任务。以谷歌为例,谷歌的核心任务是搜索、SEM、广告,这是已经被证明的商业模型,并已经持续从中获得很多利润。谷歌的战略性任务(在2010年左右)是安卓平台,为了避免苹果或其他厂商占领,所以要花时间、花精力去做,但商业模式未必成型。风险任务对于创新来说是十分重要的,比如谷歌眼镜、自动驾驶汽车等等。 数据分析项目对这三类任务的目标也不同,对核心任务来讲,数据分析是助力(E),帮助公司更好的盈利,提高盈利效率; 对战略任务来说是优化(O),如何能够辅助战略型任务找到方向和盈利点;对于风险任务,则是共同创业(I),努力验证创新项目的重要性 。管理者需要对公司业务及发展趋势有着清晰的认识,合理分配数据分析资源、制定数据分析目标方向。 2. 数据分析的 3 大思路 而面对海量的数据,很多人都不知道从如何准备、如何开展,如何得出结论。下面为大家介绍做数据分析时的 3 个经典的思路,希望在数据分析的实际应用中能给大家带来帮助。 2.1 数据分析的基本步骤 上面我们提到了数据分析与商业结果之间关联的重要性,所有商业数据分析都应该以业务场景为起始思考点,以业务决策作为终点。数据分析该先做什么、后做什么?基于此,我们提出了商业数据分析流程的五个基本步骤。 第一步,要先挖掘业务含义,理解数据分析的背景、前提以及想要关联的业务场景结果是什么。 第二步,需要制定分析计划,如何对场景拆分,如何推断。 第三步,从分析计划中拆分出需要的数据,真正落地分析本身。 第四步,从数据结果中,判断提炼出商务洞察。 第五步,根据数据结果洞察,最终产出商业决策。
举个例子: 某国内互联网金融理财类网站,市场部在百度和 hao123 上都有持续的广告投放,吸引网页端流量。最近内部同事建议尝试投放神马移动搜索渠道获取流量;另外也需要评估是否加入金山网络联盟进行深度广告投放。 在这种多渠道的投放场景下,如何进行深度决策? 我们按照上面商业数据分析流程的五个基本步骤来拆解一下这个问题。 第一步:挖掘业务含义。 首先要了解市场部想优化什么,并以此为北极星指标去衡量。对于渠道效果评估,重要的是业务转化:对 P2P 类网站来说,是否发起 “投资理财” 要远重要于 “访问用户数量” 。所以无论是神马移动搜索还是金山渠道,重点在于如何通过数据手段衡量转化效果;也可以进一步根据转化效果,优化不同渠道的运营策略。 第二步,制定分析计划。 以 “投资理财” 为核心转化点,分配一定的预算进行流量测试,观察对比注册数量及最终转化的效果。记下俩可以持续关注这些人重复购买理财产品的次数,进一步判断渠道质量。 第三步,拆分查询数据。 既然分析计划中需要比对渠道流量,那么我们需要各个渠道追踪流量、落地页停留时间、落地页跳出率、网站访问深度以及订单等类型数据,进行深入的分析和落地。 第四步,提炼业务洞察。 根据数据结果,比对神马移动搜索和金山网络联盟投放后的效果,根据流量和转化两个核心KPI,观察结果并推测业务含义。如果神马移动搜索效果不好,可以思考是否产品适合移动端的客户群体;或者仔细观察落地页表现是否有可以优化的内容等,需找出业务洞察。 第五步,产出商业决策。 根据数据洞察,指引渠道的决策制定。比如停止神马渠道的投放,继续跟进金山网络联盟进行评估;或优化移动端落地页,更改用户运营策略等等。 以上这些都是商务数据分析拆解和完成推论的基本步骤。在接下来的内容中,我们都会有这个分析思路。 2.2 内外因素分解法 在数据分析的过程中,会有很多因素影响到我们的北极星指标,那么如何找到这些因素呢?在此向大家推荐内外因素分解法。内外因素分解法是把问题拆成四部分,包括内部因素、外部因素、可控和不可控,然后再一步步解决每一个问题。
举个例子: 某社交招聘类网站,分为求职者端和企业端。其盈利模式一般是向企业端收费,其中一个收费方式是购买职位的广告位。业务人员发现, “发布职位” 的数量在过去的 6 月中有缓慢下降的趋势。对于这类某一数据指标下降的问题,可以怎么分析呢?
根据内外因素分解法,我们可以从四个角度依次去分析可能的影响因素。
内部可控因素:产品近期上线更新、市场投放渠道变化、产品粘性、新老用户留存问题、核心目标的转化。 外部可控因素:市场竞争对手近期行为、用户使用习惯的变化、招聘需求随时间的变化。 内部不可控因素:产品策略(移动端/PC端)、公司整体战略、公司客户群定位(比如只做医疗行业招聘)。 外部不可控因素:互联网招聘行业趋势、整体经济形势、季节性变化。 有了内外因素分解法,我们就可以较为全面地分析数据指标,避免可能遗失的影响因素并且对症下药。 2.3 DOSS 思路 DOSS 思路是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化解决方案的方式。快速规模化有效的增长解决方案,DOSS 是一个有效的途径。
举个例子: 某在线教育平台提供免费课程视频,同时售卖付费会员,为付费会员提供更多高阶课程内容。如果我想将一套计算机技术的付费课程,推送给一群持续在看 C++ 免费课程的用户,那么数据分析应该如何支持呢? 我们按 DOSS 思路的四个步骤,分解如下: 具体问题:预测是否有可能帮助某一群组客户购买课程。 整体影响:首先根据这类人群的免费课程的使用情况进行数据分析、数据挖掘的预测,之后进行延伸,比如对整体的影响,除了计算机类,对其他类型的课程都进行关注。 单一回答:针对该群用户进行建模,监控该模型对于最终转化的影响。 规模化方案:之后推出规模化的解决方案,对符合某种行为轨迹和特征的行为进行建模,产品化课程推荐模型。 ,实践出真知。 数据分析的方法大家不妨在自己日常工作中,有分析相关项目里尝试使用,相信可以事半功倍,创造更多商业价值。
|