递归神经网络(RNN) RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKey keyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段落或文档的所有token。前馈网络的设计只是为了一次性地查看所有特征并将它们映射到输出。让我们看一个文本示例,它显示了为什么顺序或序列特性对文本很重要。I had cleaned my car和I had my car cleaned两个英文句子,用同样的单词,但只有考虑单词的顺序时,它们才意味着不同的含义。
让我们用Thor的评论作为RNN模型的输入。我们正在看的示例文本是the action scenes were top notch in this movie... .首先将第一个单词the传递给模型;该模型生成了状态向量和输出向量两种不同的向量。状态向量在处理评论中的下一个单词时传递给模型,并生成新的状态向量。我们只考虑在最后一个序列中生成的模型的输出。图6.4概括了这个过程。